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Abstract

I provide new evidence about the information content of weather shocks in the US

coastal states, based on substantial hurricane impacts, with a quasi-experimental re-

search design that matches counties by risk, size, and income. I examine if hurricanes

represent “new news” in counties with no prior hurricanes and if expectations updating

is reflected in population and house price growth. I develop a measure reflecting home-

owners’ flood risk expectation based on flood insurance deductible data, which assumes

that higher deductibles reveal lower flood expectations. I find that population growth

declines more in counties without previous hurricanes and that this is driven by areas

with lower flood-risk priors, consistent with updating when the hurricane is more likely

to be “new news”. This is supported by within-county evidence that directly controls

for hurricane losses and residents’ priors. I find that information updating actually

increases house price growth in impacted counties with no previous hurricanes.
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1 Introduction

There is little consensus about how environmental drivers influence internal migration, par-

ticularly in high-income countries (Berlemann and Steinhardt, 2017; Hoffmann et al., 2020).1

For example, there is evidence of stable population after hurricanes (Deryugina, 2017; Strobl,

2011); of declines in growing (Fussell et al., 2017) or in richer (Logan et al., 2016) counties;

of increases in the early 20th century Boustan et al. (2012); and of increased out-migration

in a century-long data sample (Boustan et al., 2020). Migration is considered an important

adaptation response to environmental change (Hauer, 2017) but our understanding of how

it influences vulnerability and resilience is still limited (Black et al., 2011).

I provide new evidence about how population in the US coastal states adjusts after

severe hurricane shocks and whether relocations are driven by information updating. Do

hurricanes represent “new news” which can update people’s prior beliefs (referred as priors)

regarding future risk or are they ignored as “flukes of nature”? Since risk updating can

change population growth and also be capitalized in house prices, I consider the impact on

both and provide a comprehensive evaluation of the information content of weather shocks.

I analyze an original dataset of hurricane losses, during 2000-2019, and investigate the

county impact after substantial damage: over 0.66% of county GDP.2 Based on evidence that

most of the economic effect occurs within a year (Belasen and Polachek, 2008; Strobl, 2011;

Cortés and Strahan, 2017), I focus on changes in the growth of population and house prices

12 months after the impact. My research design extends the basic difference-in-difference

framework by designating quasi-experimental comparison groups that match counties on a

set of characteristics (Xiao and Feser, 2014). Past research is clear that public investments

Boustan et al. (2012), government transfers Deryugina (2017), pre-existing population trajec-

1Most evidence in developed countries is based on case-studies, e.g. Fussell (2015), Vigdor (2008), and
Landry et al. (2007), focusing on extreme-loss events which are not representative for the universe of hur-
ricanes (Boustan et al., 2020). There is also significant evidence from developing countries, as discussed in
Berlemann and Steinhardt (2017).

2This represents about 20% of the counties which experience any hurricane impact. I follow the literature,
which focuses on areas with higher impact, approximated with fatalities, wind speed, or using the SHELDUS
data. Deryugina (2017), in contrast, uses presidential declarations.
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tory Fussell et al. (2017), and income Logan et al. (2016) can amplify or dampen population

responses to weather shocks. I identify the impact of hurricanes across counties that are

similarly affected by these factors, and represent an appropriate counterfactual.3 Based on

the quasi-experimental setting that groups counties by risk, size, and income, I find that

hurricanes reduce population growth by 0.22%, or 17% of standard deviation.

How much of this is due to updating of risk expectations? A disaster may cause people

to relocate due to Bayesian updating of the probability of damage or because of loss of sunk

cost investments, which reduces the cost of moving relative to staying (Kocornik-Mina et al.,

2020). Empirical evidence for learning-driven migration is mixed. Boustan et al. (2012)

argues that disaster risk information in the 1920s is limited and disasters in the 30s/40s are

“new news” but finds that young men moved into hurricane areas, likely due to the ongoing

public flood-control investments, which crowd out private protection. Boustan et al. (2020)

examines a similar channel by focusing on the period after 1980, when disasters intensified

and new shocks may carry new information, and by using geographical features to predict

county risk and identify the responses in low-risk counties as conveying “new news”. They

only find increases in post-1980 responses to mild events. Kocornik-Mina et al. (2020) study

large-scale urban floods in 2003-2008 across 40 countries and focus on newly populated areas

with no disaster record. These experience higher reductions in economic activity, consistent

with updating only when prior risk information is limited.

To answer the above question, I follow the identification strategy proposed by Boustan

et al. (2020) that a natural disaster is “new news” in areas with low underlying risk. I assume

that counties with no hurricanes since the 50s are likely to be such places and compare their

response to counties with some prior hurricanes. This parallels Kocornik-Mina et al. (2020)

to the extent that a history of no hurricanes leads to the same priors as when there is no

disaster record. I find that the decline in growth is significantly higher in counties without

3For example, the population response of a treated county might be the same as untreated one because
the treated county is poorer than the untreated and higher income population is more sensitive to weather
losses. This will lead us to conclude erroneously that hurricane strikes do not affect population growth
because income confounds the response.
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previous hurricanes, consistent with updating when the hurricane is more likely to be “new

news”. The decline is driven by higher out-migration, not matched by increased in-migration.

I extend the identification strategy with a new proxy for residents’ priors.4 I develop

a measure reflecting homeowners’ flood risk expectations from data about flood insurance

deductibles. It is based on the assumption that those who choose a higher deductible when

insuring otherwise similar residences reveal a lower expectation of flood loss.5 Armed with

this, I examine how the population response in counties with no prior hurricanes depends

on the revealed risk expectations. I find that counties with lower flood expectations see

higher declines in population growth after the hurricane strike, consistent with updating

of flood risk. One concern is that counties with lower flood expectations have higher loss

to sunk cost investments, leading to higher relocations. This is addressed by the quasi-

experimental design that matches counties by risk, size, and income. Since the underlying

risk and expected damage is the same across the comparison group, only residents’ beliefs

are different and not the expected loss.6 I provide evidence for this in the robustness section.

My final evidence relies on within-county variation, which allows for town and county-

year fixed effects that account for permanent differences in risk due to geography and for

county-specific responses to the hurricane strike. I use a sample of state-places (referred

to as towns) within counties with no history of hurricanes and control both for hurricane

losses and flood expectations. This specification partials out the effect of losses of sunk cost

investments and identifies the effect of flood expectations as conveying “new news”. I find

that towns lower prior grow about 40% slower after the hurricane.

House prices within treated no-history counties grow faster in areas with low priors.

4The recent literature on the capitalization of sea-level rise in house prices highlights the importance of
risk beliefs, for the economic impact of new weather risk information (Bakkensen and Barrage, 2021; Baldauf
et al., 2020; Murfin and Spiegel, 2020).

5In the empirical specification I divide the difference between the chosen deductible and the minimum
deductible by the difference in the chosen premium and the premium with the minimum deductible. Since
homeowners can save on the flood insurance premium by choosing a higher deductible, they can choose an
above-minimum deductible if their expected risk of flooding, or information prior, is below the (premium-
savings)/(additional-deductible-exposure) ratio (Cohen and Einav, 2007).

6See (Bakkensen and Barrage, 2021; Baldauf et al., 2020; Murfin and Spiegel, 2020) for why beliefs can
differ even with the same weather risk.
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Given the population results, this is not consistent with lower housing demand after risk

revisions, or at least suggests a relatively smaller reduction. Instead, the evidence points to

a supply contraction, strong enough to increase price growth even with slower population

growth. This suggests that local governments limit construction or enforce zoning more

aggressively.7 The housing evidence implies that population growth declines due to changes

in expected risk that indirectly affect the location choice by reducing available housing. This

further clarifies that surprises can reshape the population and house prices as a result of

measures taken by local communities as expected risk increases.

My main contribution is in distinguishing whether severe hurricanes convey “new news” in

counties with limited previous experience with hurricanes. I provide comprehensive evidence

for the impact on population and on house prices. First, I find that destruction of sunk

investment and learning about weather risk can similarly affect population relocation. In

contrast, learning has a minimal impact in areas with previous hurricanes or where severe

weather is expected. The learning occurring after hurricanes that break with pre-existing

expectations implies that areas subject to surprises can reduce future risk more easily since

they internalize new information, while areas that appear less responsive to information

shocks will need to depend on major public and private investments or forced resettlements

(Hallegatte, 2006; Petkov, 2021). Second, the house price evidence further clarifies how “new

news” allow communities to learn about weather risk. My results suggest that expectation

revisions are internalized through restrictions in the housing supply, highlighting that hazard

mitigation is delivered by the local government (Prater and Lindell, 2000).

This paper contributes to the literature on expectation formation, learning, and adjust-

ment after rare events. There is evidence that perceived weather risk responds to weather

extremes (Deryugina, 2013; Cameron and Shah, 2015; Konisky et al., 2016), increases in-

surance demand (Gallagher, 2014), is capitalized in house prices after disasters (Atreya and

Ferreira, 2015; Bin and Landry, 2013; Kousky, 2010) or flood-zone updates (Hino and Burke,

7I provide evidence for this in the robustness section.
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2021; Indaco et al., 2019), and can lead to relocations (Baker et al., 2009; Boustan et al.,

2020; Kocornik-Mina et al., 2020; Röckert and Kraehnert, 2021). As reviewed above, there is

very limited evidence of information-driven environmental migration in developed countries

but even for developing countries the evidence is mixed (Berlemann and Steinhardt, 2017).

My results are consistent with Boustan et al. (2020) in implying that hurricanes can lead to

information updating. My contribution is in providing an original dataset of hurricane losses

and a novel measure of flood expectations. I show that the hypothesized “new news” effect

of hurricanes is empirically relevant once we account for flood expectations. I incorporate a

quasi-experimental research design, which can justify the assumption the lower expectations

are not confounded by higher losses.

I contribute to the literature of capitalization of environmental risk in house prices. The

evidence of post-disaster price decline (listed above) is contested as overlooking damages

(Atreya and Ferreira, 2015), or amenity values (Atreya and Czajkowski, 2019; Beltrán et al.,

2018). A recent literature on the risk from sea-level rise argues that local weather expecta-

tions are key (Bakkensen and Barrage, 2021; Baldauf et al., 2020; Barrage and Furst, 2019;

Bernstein et al., 2019; Murfin and Spiegel, 2020). My results that prices increase in areas

with lower priors do not confront existing evidence, which focuses on high-risk flood zones,

e.g. Hallstrom and Smith (2005); Bin and Landry (2013), but are relevant for studies that

find a wide spread price decline after disasters, e.g. Kousky (2010). My evidence is comple-

mentary because it shows that there are differences based on the homeowners’ priors about

risk. Higher surprises may lead to a reduction in supply driven by stricter building standard

or flood-zone enforcement. This is likely unique to areas that are newly impacted by hazards,

which is not the case for the majority of papers that find a reduction in prices.

The paper proceeds as follows: section 2 describes the data sources and definitions of the

main variables of interest; section 3 focuses on the effect of hurricanes on population; section

4 discusses the effect on house values; section 5 includes robustness checks.
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2 Data, Sample Selection, and Definition of Shocks

This section provides data sources and definitions of the main variables of interest.

Hurricane Damages and Exposure: The sample focuses on counties in US coastal states

with a hurricane disaster declaration during 2000-2019. I compile hurricane-related losses

by adding insured and uninsured damages from four different sources: the Individuals and

Households Program grants (IHP); Small Business Administration relief loans (SBA); Public

Assistance (PA); National Flood Insurance Program claims (NFIP).8

FEMA provides non-repayable grants to homeowners and renters to cover disaster losses

(immediate needs following disasters) through the IHP. I use the total property damage

from this data source, which is determined by FEMA inspectors and is listed at the town-

county level, for each disaster. The SBA dataset of verified residential and business damage

is based on applications for low-interest loans to cover uninsured losses. It includes the

total loan amount requested, loss incurred, and the location of the property. Losses are

listed at the county level for each disaster. Total county losses include both residential and

business-related losses from this dataset. The PA dataset includes county-level, disaster-

specific damage to roads and bridges, water control facilities, public buildings, and public

utilities. I use the total amount of public assistance paid to each county to approximate the

amount of damage to the public infrastructure. Finally, I identify the insured loss caused

by flooding with NFIP dataset of flood insurance claims. For each claim the data includes

the census tract, the amount paid, the date on which the loss was incurred, as well as the

characteristics of the structure (flood zone, date built, number of floors, etc.). I match the

date of loss to the hurricane date in each county to identify whether the insurance claim is

related to a disaster declaration. Additional details are listed in Appendix A

Flood Insurance: In addition to the data on flood insurance claims, I use information

8The IHP, PA, and NFIP data is hosted on FEMA’s website. The SBA data is available on SBA’s website.
Losses exclude insured wind losses, which are partially covered by home-owner’s insurance, or vehicle losses.
A recent CBO report (CBO (2019)) approximately 60% of annual damage is due to flooding, which suggests
that my estimate of losses captures a big portion of actual losses.
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on the number of purchased flood insurance policies. I use this data to build a proxy for

residents’ flood risk expectations. It is available on FEMA’s website and provides all of the

building characteristics necessary to determine the premium (or insurance policy cost) paid

by each homeowner. This data lists the census tract of each insured property and allows

me to identify what deductibles are chosen by homeowners at the county level, and at the

more granular town/tract level. Premiums depend on the flood zone, building elevation,

amount covered, date of construction, and the size of the deductible. For pre-1974 flood

zone structures premiums are based on coverage, for the rest they are based on the elevation

relative to the 1%-a-year flood BFE.9 Flood insurance is required for mortgaged structures

in the 100-year zone, where flooding of a specified elevation (BFE) can occur with an annual

probability of 1%.10 This ensures that each county with an established flood zone will have

information about the number of existing flood insurance policies and the deductibles chosen

by residents. The latter is key for my measure of flood risk expectations. The policy data

starts from 2008 but includes the initial year of purchase for all active policies. For policies

prior to 2008, I use the date of initial purchase to reconstruct earlier insurance data. In

the robustness section, I examine the sensitivity of the main results using only post-2008

insurance policy information.

Flood Expectations and Surprises: The research design in this study focuses on counties

with low weather risk expectations and assumes that hurricane strikes are more likely to

be “new news” in such areas. I identify areas with low expectations in two ways: using

hurricane history before 2000 and using a novel measure of flood risk expectations based on

flood insurance deductibles. For the first measure, I use historical county data from FEMA

about hurricane-related disaster declarations. For the second measure, I use deductibles data

from the FEMA dataset on active flood insurance policies.

The logic of the flood risk expectations measure, based on insurance data, is that home-

9Numbers are based on the pre-2010 insurance cost. Generally, pre-1974 structures have higher premiums
compared to post-1974 ones, which tend to be elevated: $1,000 vs. $600.

10Kousky (2018) provides an in-depth discussion of the NFIP.
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owners who consider weather risk unlikely will choose a relatively high deductible in order

to reduce the cost of insurance (premium). The cost of insurance is lower with higher de-

ductible because it limits the insurance payout in the case of flooding. Switching from $1,000

to $2,000 in building deductible reduces the premium by 5%, or $25 with $500 premium. The

$25 saving trades off an increase in out-of-pocket cost of $1,000 in the case of flooding. If a

risk-neutral resident expects the risk of incurring an additional $1,000 is less than 2.5% they

choose the higher deductible. By comparing the difference in the premium to the difference

in deductible we can determine the risk of flooding assumed by a homeowner who chooses

an above-minimum deductible.

I calculate what I refer to as upper bound of expected probability of low-damage flood by

focusing on homeowners who have chosen above minimum deductible.11 For each, I calculate

the change in the premium if the homeowner were to choose the minimum deductible and the

change in the deductible from their current higher deductible to the minimum deductible.

The ratio of the premium change relative to the deductible change gives the upper bound of

expected risk of flooding, as showcased in the example above.

I calculate what I refer to as a lower bound of expected probability of low-damage flood

by focusing on homeowners who have chosen the minimum-deductible option. For those, I

divide the decrease in the premium from choosing a higher deductible by the increase in out-

of-pocket exposure. More specifically, I compare the deductible/premium at the minimum-

deductible option and at the next-to-minimum deductible option. Prior to 2010 the min-

imum was $500/$500 and next-to-minimum was $1,000/$500. Post 2010, the minimum is

$1,000/$1,000 and the next-to-minimum is $2,000/$1,000.

I use the average of the upper and lower bound as the second proxy of expectations.

I aggregate individual expectations by taking the average by the county or town/census

tract. I multiply all expectations measures by -1 to represent the level of surprise after

11I consider residents who take at most $4,000 of combined (building and contents) deductible prior to
2010 and at most $6,000 afterwards. Following 2010, the minimum possible deductible increased from a
combined $1,000 to $2,000.
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an event, i.e. an increase reflects a lower expected risk and hence a higher surprise in the

case of a hurricane. I also use the residuals from regressing the upper/lower bound on the

characteristics of the insured structure. For more details consult Appendix A.

In order to calculate how the premium of each insurance policy will change if the home-

owner were to choose a different deductible I use the stated housing characteristics such as

flood zone, building elevation, amount covered, date of construction. I use the information

from the NFIP’s flood insurance manual (available on FEMA’s website) which details the

relationship between the premium and deductible, conditional on the housing characteristics.

The handbook describes the “premium factor” for different deductibles based on the date of

construction, flood zone, building elevation, etc. For more information and an example of a

table of premium factors from the NFIP’s flood insurance manual, refer to Appendix A.

County Peer Groups: I define two county groups using different definitions of risk and

interact each with income and population categories in order to limit the role county unob-

servables which can confound population growth. For the first, I model the risk of having

over 0.66% damage with a probit regression of actual 0.66%+ damage on a set of housing

characteristics and split the predicted values into 15 categories.12 The second is based on the

fraction of housing in high-risk flood zones interacted with historical hurricane incidence.13

Population, Migration, House Prices, and Income: Annual population/buildings es-

timates come from the Census. Migration comes from the IRS data. I also use tract USPS

quarterly addresses data.14 Census tract house values are based on the House Price Index

(HPI) from the FHFA, which measures newly-sold single-family prices changes, controlling

for time-invariant unobservable effects. I also use Zillow’s town-level House Value Index,

12The regressors are: fraction in high-risk flood zone, fraction in low-risk flood zone, fraction built before
1974, fraction elevated, fraction 3+ floors, fraction town-houses, fraction in communities with 7+ on the
Community Rating System, fraction non-primary residences, indicator for no pre’00 hurricane declarations,
average building insurance coverage.

13Population groups are based on cutoffs at 10,000 and 100,000. Income per capita groups are based on
cutoffs at $20,000 and $40,000. Flood-zone groups are based on the deciles of the distribution. The hurricane
incidence groups are defined as no-hurricane pre’00 and some hurricanes pre’00.

14It USPS data starts from the end of 2005. I subtract the number of non-deliverable addresses (known
as non-stat) from the total mailing addresses and use this adjusted measure to identify annual population
changes at the census tract.
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which represents the median quality-adjusted house values. County income is from the

Bureau of Economic Analysis (BEA) coving 2000 to 2018.

Sample Selection and Summary Statistics: The sample includes the year before/after

each hurricane during 2000-2019 for counties in US coastal states with hurricane-related

disaster declarations, designating those with 0.66%+ damage as treated. In the robustness

section I lower the damage definition of treatment to 0.33%+. The included states are:

Alabama, Florida, Georgia, Louisiana, Maryland, Mississippi, North Carolina, New Jersey,

New York, Pennsylvania, Texas, Virginia. You can also find the list and summary statistics

for each state in Table 3. Hurricanes occur in late August/early September and population

is reported end of June. Population in June of the hurricane year is pre- and in the following

year is post-event.15 I drop counties with over 50% damage.

3 Expectations Revisions and Losses After Hurricanes:

Impact on Population

This section discusses the identification strategy, empirical model, and estimates related to

the effect of hurricane-generated surprises on population growth and migration. It presents

the county-level composite effect, the heterogeneous effect by hurricane history and by resi-

dents’ deductible-inferred expected flood probability, and the within-county – town or census

tract – effect with joint damage and expectations controls.

3.1 Descriptive Evidence

Counties with hurricane declarations attract more population and are riskier: they grow

faster than the average, have more flood-zone buildings and lower flood expectations, ac-

cording to Table 1. Relative to counties with declarations, the 0.66%+ ones are bigger, are

15If the hurricane occurs before June, the pre-year is the year before the hurricane and the post-year is the
year of the hurricane. One exception to this is the migration and HPI data which covers the entire year. In
this case the pre- year is the one that precedes the hurricane and the post- year is the year of the hurricane.
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exposed to flood risk, and have lower flood expectations. The effect of hurricanes is evi-

dent form simple average comparisons. Being impacted by a hurricane (treated) reduces the

county population growth by close to 0.3%, or 0.545% vs 0.257%. This difference is stronger

when places have limited historical experience with hurricanes.

The empirical model distinguishes pre-hurricane expectations, either with historical expe-

rience or the implicit probability of flooding from deductibles, to quantify the role of surprises

in places with hurricanes. To build intuition, Table 2 lists regression estimates of the implicit

expectations from deductibles on individual or county factors. Lower expectations are asso-

ciated with lower susceptibility due to recent construction and elevated or low-risk flood-zone

structures. Table 3 presents the state distribution of expectations, multiplied by -1 to reflect

surprises. Hurricane history does not fully capture surprises: expectations are lower with

hurricane experience compared to without in 5 of 11, suggesting that previous events lead to

adaptions that reduce (perceived) risk. I account for this when selecting county peer groups.

Table 4 lists summary statistics for locations within treated counties by historical hur-

ricanes. Population growth is negative after the first hurricane and is positive with pre-

sample hurricanes. State-places with surprises have limited historical experience but not

all of them have low loss expectations: those with and without pre-sample hurricanes have

similar average surprise, but the latter have substantially higher standard deviation. All

tracts experience similar losses, measured by the fraction of claimed insurance, but those

with no pre-sample hurricanes have higher surprise.

3.2 Overview of Approaches

The empirical model identifies the short-run population growth response in the year after a

hurricane relative to the pre-hurricane year and to other counties within a peer group with

similar characteristics.16 To capture the independent effect due to potential expectation

revision after a hurricane, I pursue three different approaches. First, I start with the het-

16The shorter span helps simplify the treatment of long-term trends over the twenty-year sample and the
potential feedback from hurricane loss.
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erogeneity across locations with different historical experience. Hurricane history reflects

resident expectations only partially, since learning can occur indirectly, e.g. neighbors can

update expectations. To allow for this, in the second approach, I use flood probability in-

ferred from deductibles. I identify information shocks to the the location choice with growth

difference in places with different pre-existing expectations, assuming that de-facto losses do

not vary with pre-existing expectations, within the peer group.

The effect heterogeneity can reflect a combination of physical susceptibility, or vulner-

ability, and changes in severe-weather expectations (Keating et al., 2014). To disentangle

each, in the third approach, I estimate a within-county model that controls for direct loss

and pre-existing expectations and examine growth at towns or tracts with similar damage

but different expectations. I interpret growth differences as location choice shocks that hold

de-facto damage constant and reflect adjustments in expectations.

3.3 Composite Effect of Hurricanes

3.3.1 Empirical Methodology

The model of the unconditional effect of hurricanes, using the year pre/post a hurricane for

counties with declarations during 2000-2019, is:

(1)4 ln Popc,t = βHurc,t−1 + αc + ψPeerGroup(c),t + εc,t

4 ln Popc,t is annual population log difference in county c, year t. Hurc,t−1 is the treatment

lag (0.66%+ damage). αc/ψPeerGroup(c),t are county/peer-group-year FEs. β is the composite

hurricane growth impact, driven by: losses to private, public or commercial property or

expectations adjustments, which are key in the rebuilding/location decision.17 The model

cannot distinguish individual factors but provides a test for the average impact.

The county FE allows for non-parametric growth differences due to invariant factors. The

peer-group-year FE controls for common time-varying shocks. In contrast to the existing

17More resilient structures are significantly more expensive and limit the number of people that can afford
to live in the community.
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literature, which assumes that hurricanes are random within states and uses unaffected

counties as a control group (Strobl, 2011), I use declaration counties with loss below 0.66%

as controls. β is identified as the composite hurricane effect, assuming that treated and

untreated counties are not qualitatively different. This can be violated if untreated counties

are better at limiting losses. If treatment depends on risk, income, or population, β will

reflect the joint impact. Peer groups FEs mitigate this since the effect is estimated relative

to similar counties. I build county risk groups using: i) predicted probability of 0.66%+

damage from a probit model; ii) state decile of the fraction of flood-zone housing interacted

with hurricane history.18 Allowing for common shocks across counties with similar risk helps

estimate β holding expected loss, or risk, constant. I interact risk groups with population

and income categories, resulting in groups with similar risk, size, and development.

3.3.2 Results

Estimates with different control groups are in Table 5, columns (1)-(6). With a state-year

FE, growth falls by 0.18% post hurricane. The effect is slightly stronger when including

a risk-group FE in (2), which compares population responses across counties with similar

risk. It increases substantially with population/income FE, in (3) and (4), underscoring

that responses depend on the relative size and income.19 With FEs for all three peer-group

controls, growth declines by 0.22%. The estimated decline is 0.25% when county risk is

based on the decile of high-risk flood zone structures and a hurricane history indicator. The

difference seems to be due to the faster growth at counties with some hurricane history.

Hurricanes reduce growth close to 17% of standard deviation. The result is robust to several

alternative specifications of the control group and has the highest magnitude when counties

18More specifically, I construct such a group by estimating the ex-post county probability of having damage
over 0.66% based on the lagged county average of fraction of residences that are in high-risk flood zone,
in low-risk flood zone, built before 1974, elevated, 3+ floors, town-houses, in communities with 7+ on
the Community Rating System, non-primary residences. I also control for an indicator for no pre-sample
hurricane declarations and for the average building insurance coverage. The regressors are based on the data
on active flood insurance policies.

19Population size has three categories relative to cutoffs at 10,000 and 100,000 people. Income-per-capita
category is based on cutoffs at $20,000 and $40,000.
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are matched by risk, size, and economic development. Growth declines due to a combination

of displacement during the recovery and changes in expectations that discourage rebuilding

or cause residents to relocate. Next, I decompose the role of each, assuming that places with

lower pre-existing expectations experience stronger information shocks and by proxying for

expectations with historical experience or insurance deductibles.

3.4 Differences by Historical Hurricane Incidence

3.4.1 Empirical Methodology

The composite effect reflects: i) current property loss, business interruption, and duration of

recovery; ii) changes in expectations of future loss. The second factor can be limited in places

with a long – and frequent – history of hazards, which is key in quantifying the importance

of expectations elsewhere. I distinguish two county groups: with zero hurricane declarations

and with some declarations, going back to 1950. Comparing growth after a hurricane in the

first group relative to the second identifies the additional impact of adjusting expectations.

This interpretation requires that counties are otherwise similar – likely to be the case within

the peer-group-year FE which controls for the probability of a weather event, income, and

population.20 Controlling for the pre-existing physical characteristics, via weather risk, is

critical to make sure that actual losses are similar. The formal model, using population

growth and migration is:

(2)4 ln Popc,t = β1Hurc,t−1NoHistc + β2Hurc,t−1YesHistc + αc + ψPeerGroup(c),t + εc,t

Hurc,t−1 depends on declarations during 1950-2000: NoHistc/YesHistc are indicators for

no/some declarations. β1 and β2 are expected to be negative, reflecting a short-term growth

decline due to a combination of property loss and expectations, causing some to reconsider

their location choice. The coefficients are identified by comparing growth in treated counties

relative to the untreated, within a group with the same income, population, and predicted

20Note that I use physical characteristics to predict the likelihood of a hurricane causing 0.66%+ loss.
Groups based on this will match counties with similar risk factors. This does not imply that residents will
have similar expectations about the underlying weather risk.
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probability of having over 0.66% loss. If all treated counties have similar losses, which result

in similar population responses, but different pre-existing expectations, the difference in co-

efficients captures the the role of surprise after the impact due to revisions. This relies on

counties which differ by history but otherwise have similar predicted probability of 0.66%+

loss from the probit model. When I model risk with the flood-zone building share, I also

interact with hurricane history, which changes the identification strategy. In this case, I com-

pare treated counties with no hurricane history to untreated ones also without history but

similar flood-zone shares – likewise for counties with hurricane history. With this strategy,

growth differences across treated and untreated counties with no hurricane history capture

the effect of losses and relative adjustment in expectations. The same comparison across

counties with some hurricane history should reflect mostly the effect of losses since expecta-

tions are assumed to be stable and do not respond to treatment. In all cases, comparing the

two coefficients quantifies the role of expectation revisions in no-history counties.

3.4.2 Results

The results by hurricane history are in Table 5, columns (7)-(8), using two risk specifications.

In the first, growth declines by 0.4% (30% of s.d.) in the no-history counties compared

to 0.16% (11% of s.d.) decline elsewhere. If the pure damage effect is identified by the

some-history counties then the growth impact of the information shock makes up 60%. In

the second, declines are similar but significant only in the counties with history (0.28%),

suggesting a minimal information impact. The evidence confirms that hurricanes depress

growth in all treated counties and highlights an important source of heterogeneity: prior

hurricanes experience. Assuming that losses do not vary by history and that expectations

are stable in places with prior experience, the stronger decline in (7) for counties with no

prior hurricanes can be attributed to expectation revisions. The similar decline, in (8),

which compares treated to untreated counties with no history, suggests that the role of

expectations is smaller. This is due to the fact that not all no-history counties have low pre-
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existing expectations and/or expectations can adjust significantly in the no-history control

group. I address this directly in the next section by controlling for the level of pre-existing

expectations in all no-history counties.

Expectation revisions can slow down the arrival of new residents or incentivize the relo-

cation of existing ones. The migration impact estimates suggest that residents are moving

out 3.7%/3.3% faster relative to the peer untreated counties. The effect is robust to risk

group specifications and the magnitude is consistent with the population growth estimate.

Counties with hurricane history do not experience such outflows but instead see slightly

lower inflows. Assuming stable expectations in some-history counties suggests that 100% of

outflows are driven by the information shock. The migrations estimates reveal an important

aspect of risk revisions that cannot be identified from population growth: they can lead to

sorting as residents who reduce potential exposure are replaced by those who tolerate higher

risk (Bakkensen and Barrage, 2021). This is evident from (8) and (12) where growth declines

less due to somewhat higher inflow. The results are consistent with the interpretation that

residents of counties with prior hurricanes have stable expectations, only potential new resi-

dents appear to update theirs, leading to lower growth. The risk FE matches counties likely

to experience a similar impact when treated, reducing the concern of damage difference. This

supports the interpretation that expectations adjustments can meaningfully impact growth

in addition to property loss.

3.5 Differences by County-level Flood Surprises

3.5.1 Empirical Methodology

Communities are exposed to new information from neighbors and can be subject to low-

damage, expectations-updating events, and not all locations with limited historical inci-

dence exhibit an expectations shock. To more directly focus on pre-existing expectations, I

measure surprise with the inverse of the expectation of low-impact flooding from insurance

deductibles. The growth response in counties with low expectations after a hurricane can
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reveal the role of adjustments in expectations resulting from surprises. Gallagher (2014)

describes that insurance take-up picks up after extreme weather and slowly diminishes over

time. A similar learning process will lead to updating right after a hurricane, generating a

bigger proportional adjustment in counties with lower pre-existing expectations, and, as a

result, a stronger growth response.

The identification strategy compares counties with no hurricane history where residents

chose a higher deductible only for substantial premium savings, or have higher pre-existing

expectations, to those who do so even for smaller savings, or have lower pre-existing expec-

tations, with the model:

(3)
4 ln Popc,t = β3Hurc,t−1NoHistc + β4Hurc,t−1NoHistc × Surprisec,t−1 + β5NoHistc

× Surprisec,t−1 + β6Hurc,t−1YesHistc + β7Hurc,t−1YesHistc
× Surprisec,t−1 + β8YesHistc × Surprisec,t−1 + αc + ψPeerGroup(c),t + εc,t

where Surprisec,t−1 is the continuous surprise measure.21 The interaction of pre-existing

expectations with treatment in counties with no previous hurricane incidence is estimated

with a triple-difference that compares the impact at no-history counties at different levels of

pre-existing expectations. In other words, it examines how the estimate from the previous

section varies by the surprise measure. The coefficient of interest, β4, captures the impact

of a higher surprise for treated counties with no hurricane history. A negative estimate

implies that treated no-history counties have a higher growth decline when residents assume

a lower probability of flood damage, consistent with a surprise that leads to additional

growth decline, more significant in counties with lower pre-existing expectations. β3 reflects

the growth effect for counties where damage is completely unexpected. β5/β8 capture the

effect of expectations at untreated counties.

There are still two different identification strategies depending on how I model weather

risk. When I use a risk group based on the probit predicted probability of 0.66%+ loss,

21In the case of the Adjusted Surprise measure, which is based on residuals from regressing observable
characteristics, the measure can take positive and negative values and increases still represent higher levels
of surprise.
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I compare treated no-history counties with different pre-existing expectations to untreated

counties with similar predicted probability of loss. When I use the share of flood-zone

housing, I compare treated no-history counties with different pre-existing expectations to

other no-history untreated counties with similar share of at-risk housing. In the latter

case, examining the variation by expectations is critical since no-history counties can vary

significantly by hurricane expectations depending on their proximity to previous hurricanes.

3.5.2 Results

Estimates in Table 9, distinguish counties by the implicit expectations inferred from the

insurance deductible choice. Growth declines by approximately 1% when the upper-bound

surprise measure is at its highest. A 5% higher surprise, or lower expected probability of

flooding prior to the hurricane, reduces growth by .25% – .5%, depending on the specification

of the risk group in (2) or (3). The bottom of Table 9 quantifies the effect at the 25th/75th

percentiles: growth is lower by 0.67%/0.46% at high/low surprise counties, relative to the

untreated in column (2). With peer groups that include only no-history counties the dif-

ference by surprise is even bigger – 0.58%/0.27%. This implies that the information shock

reduces growth by 0.2% to 0.3% or about 50% of the total, which is consistent with the

previous section.

The stronger growth response with higher surprise remains the case across different prox-

ies: average of the upper/lower bound of expectations; adjusted versions, using the residuals

from each of the measures after controlling for insurance policy observables. With the first,

the marginal effect of a surprise increase slightly: growth declines by 0.35%/0.66% in counties

with 5% higher level of surprise. With the second, the marginal effect is even higher.

The pattern suggests that the surprise reflected in hurricane history underestimates the

role of information shocks. The average effects I estimated above is in line with counties at the

25th percentile of surprise. Those with much higher surprise, or lower expectations, reduce

growth dramatically more, or about 50% more, than the rest. What explains this? Table 2
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provided some of the intuition about which counties have lower expectations and, respectively

higher surprise after an impact: places with newer construction, more buildings in low-risk

zones, less buildings in high-risk zones, lower coverage, among others. In other words,

counties that are presumably safer exhibit the strongest decline in growth after a hurricane,

while counties that generally are more at risk do not. Growth declines due to direct losses or

changes in expectations of future losses, which can either cause relocations, implementation

of mitigation projects, stricter flood-zone management, or increased insurance cost. Direct

loss is unlikely to increase with surprise becuase identification is relative to counties with

similar risk characteristics.

3.6 Differences at Town/Tracts Within No-Hurricane Counties

3.6.1 Empirical Methodology

I address the possible correlation between expectations and damage, and identify the role of

expectations in locations within affected counties that do not suffer direct damages. I use two

samples within 0.66%+ counties, controlling for property loss and pre-existing expectations:

i) towns or state-places, using population growth; ii) census tracts, using mailing addresses

growth. The damage proxy is the fraction of claimed flood insurance. Surprise is similar to

the county measure, but is aggregated at the town or census tract.22 The formal model is:

(4)4 ln Popl,t = γ1ImpactNoHist
l,t−1 + γ2SupriseNoHist

l,t−1 + ζZl,t−1 + αl + ψc(l),t + εl,t

4 ln Popl,t is the log population difference in l: town or census tract. ImpactNoHist
l,t−1 /

SupriseNoHist
l,t−1 is the fraction of flood insurance claims/level of surprise in a county with

0.66%+ damage and no pre-sample hurricanes. Zl,t−1 has additional controls, including

losses recorded by FEMA inspectors.23 αl, the location FE, controls for permanent growth

22Note that losses and expectations are derived from the flood insurance data. Towns with losses have
an associated surprise measure. Other sources of loss will not be reflected in the sample and will not be
associated with any level of surprise.

23I include fraction in high-/low-risk flood zone, fraction built before 1974, fraction elevated/3+
floors/town-houses/with basement, fraction in communities with 7+ on the Community Rating System,
fraction non-primary residences, average building insurance coverage, deductible as a fraction of building
coverage.
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differences. ψc(l),t, the county/state-place-year FE, controls for common county-level or town-

level responses after a hurricane, such as due to different riskiness, income, or population.

γ1, the growth effect of direct loss, is identified by comparing towns within the county

or tracts within towns, holding pre-existing expectations constant. γ2, the effect of expec-

tations, is similarly identified, holding losses constant. In the current setting, γ2 reflects the

independent effect of pre-existing expectations on population growth. It can be interpreted

as the difference in growth across locations that experience the same loss but have different

expectations prior to the loss. I also test whether the effect of expectations depends on

the impact by interacting the two. Identification in this model differs significantly since I

compare town growth relative to the county average or census growth relative to the town

average in no-history treated counties. While I can no longer use peer groups to control for

risk, I rely on controls in Zl,t−1 to limit any confounding impact.

3.6.2 Results

The first part of Table 7 focuses on growth at towns within counties with no prior hurricanes

and the second uses census-tract growth. Town evidence shows that both losses and surprise

reduce growth. In column (1), 25% more losses leads to 0.33% slower growth; 5% higher

surprise reduces growth by 0.1%. The bottom panel reports growth at zero loss and the

25th/75th percentiles of flood surprise.24 Regardless of expectations, no-loss towns grow

faster than the rest due to the limited direct impact. Conversely, higher loss reduces town

growth, holding expectations constant. At the same time, towns with higher surprise grow

about 40% slower relative to those with lower surprise: 0.07% versus 0.166%. Column (3)

replaces the continuous variables with indicators for the top quartile. Across towns with low

losses, those with low expectations grow 0.23% slower relative to the rest, post hurricane.

In (2), I test the non-linearity of surprise at different loss levels and find that interaction is

positive and significant, implying that expectations do not play a role in towns with higher

24Note that since the surprise measure is negative, low surprise corresponds to a higher absolute value.
The 25th/75th percentile is low/high surprise.
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damage but are associated with significant declines elsewhere. With the interaction, the

effect of surprise on growth at low-loss towns is amplified: 0.374% versus 0.175%. This is

confirmed in (4) with indicators.

Columns (5)-(8) focus on census tracts within the same counties as (1)-(4), using within

town variation to identify the main effect.25 In (5), the effect of surprise is negative and

statistically significant, while the loss estimate is negative but not significant. This implies

that within-town expectations difference are associated with census tract growth while loss

difference are not. Tracts with lower expectations prior to the hurricane, or higher surprise,

underperform the rest even after controlling for losses: 5% higher flood surprise is associated

with 0.44% lower growth. At low impact, high surprise tracts grow at 0.25% versus 0.9% at

low surprise (relative to the town). Column (6) includes an interaction term, which reveals

that expectations matter less with higher losses. The magnitude of the interaction leads to

different conclusions relative to (2). With towns, expectation differences are not important

when losses are higher but matter at lower losses; with tracts within towns, expectations

dominate growth outcomes – high surprise tracts grow significantly slower.

3.7 Discussion

Altogether, the results suggest that direct damage and surprises, or information shocks,

associated with lower pre-existing flood expectations both have an effect of similar magnitude

on growth after a hurricane. Property damage reduces growth since structures are either

not rebuilt or construction takes a long time. Interestingly, once a community suffers loss it

is rebuilt regardless of how surprising the impact is: towns with a high impact experience

similar growth regardless of expectations. In contrast, towns with limited damage and

low pre-existing expectations experience a growth decline due to information updating. I

interpret the occurrence of a hurricane in such towns as an information shock that leads to

changes in the location choice for current and future residents. The fact that the decline

25The sample starts in 2006.
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is stronger in places with lower pre-existing expectation suggests that revisions are more

significant with bigger surprises. Towns with higher pre-existing expectations and limited

damage appear to be least affected. This suggests that they either have limited revision

in expectations or revisions increase the cost of insurance and lower the value of housing,

keeping population stable.26

4 Expectations Revisions and Losses After Hurricanes:

the House Price Impact

The evidence so far clearly indicates that surprises due to lower pre-existing expectations are

associated with slower growth, particularly if residents have limited direct losses. Growth in

low-surprise areas does not respond significantly since pre-existing expectations are stable.

This is consistent with the interpretation that high-surprise places experience information

shocks to their location, choice causing residents to leave. With sizable losses expectations

do not seem to play a role as the effect of loss-driven displacement tends to dominate.

Not all adjustments will be reflected in the relative size of the county or town. Sur-

prises can, instead, affect the going price of real estate as residents who avoid higher-than-

anticipated risk sell their property. Revisions of expectations can also lead to significant

supply reductions in communities that restrict construction in high-risk areas by implement-

ing stricter regulation. This section helps distinguish whether places that internalize higher

weather risk experience demand-driven changes in the housing market, which can dampen

the growth impact by attracting new residents with lower prices, or take measures to limit

future risk by restricting new construction.

26Increasing insurance coverage in locations with higher pre-existing expectations is more expensive. As
shown in Table 2 such areas have older, less elevated housing, in higher-risk flood zones.
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4.1 Empirical Methodology

The setup closely follows the population model, focusing on within county differences – at

the town and census tract level. I control jointly for expectations and damage, identifying

the role of surprises due to low pre-existing expectation in locations within affected coun-

ties that suffer various degrees of direct damages. There are two different samples within

0.66%+ counties: i) towns or state-places, using Zillow’s HVI growth; ii) census tracts, using

growth in FHFA’s HPI. Impact and surprise are proxied as in the population model by flood

insurance claims and deductible-based flood probabilities.

There are some important distinctions in the interpretation of what shocks are identified

when applying the previous model to the real estate market. Since direct losses and sur-

prises can affect both the supply and demand of housing, estimates should be interpreted

in the light of what happens to population and according to whether supply or demand is

shifting. With constant supply, the increase in expected risk in surprise locations – which

experience slower population growth – is expected to further lower house prices relative to

places where risk expectations are stable and population is less affected. With contracting

supply, higher expected risk can results in a variety of price changes relative to places with

stable expectations. A strong contraction in surprise places can increase prices compared

to non-surprise places, even with slower population growth.27 What can cause such supply

contractions? Direct property loss can reduce the available housing. Alternatively, local

governments can impose stricter building regulations as a result of higher risk expectations.

This can reduce the availability of new housing by making new construction more expensive

or by instituting no-building zones. Since surprise places are generally less susceptible to

damage it is less likely that supply is reduced due to direct losses. I formally examine the

house price response with the following model:

(5)4 ln HouseIndexl,c,t = γ1ImpactNoHist
l,c,t−1 + γ2SupriseNoHist

l,c,t−1 + ζZl,c,t + αl + ψc(l),t + εl,c,t

27I do not discuss the case where the supply in low-surprise places contracts more since expectations are
assumed to be stable.
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where 4 ln HouseIndexl,c,t is the annual difference the house value index in location l,

in affected county c, during the year t. The rest of the variables are defined as in model

(4). The coefficient of interest, γ2, captures the difference in the growth of house values

across locations with different levels of surprise after a hurricane, holding the level of direct

hurricane impact constant. A negative estimate is consistent with a demand shock following

an increase in risk expectations in places with higher surprise and a limited change in the

supple of housing. Residents reduce exposure to higher weather risk by relocating and

selling existing property at a lower price that offsets higher risk. This suggests that the

population growth responses are actually attenuated by the house price dynamic (Glaeser

and Gyourko, 2005). A positive estimate is consistent with the slower population growth

evidence only if the housing supply contracts more in high-surprise places relative to the rest.

This evidence supports the interpretation of surprises as information shocks but suggests that

higher expected risk can trigger local responses to limit future losses that result in lower house

supply. A positive estimate implies that local measures ultimately countervail the effect of

any reduction in demand due to higher expected risk.

4.2 Results

The estimates based on town HVI are listed in the first part of Table 8 and tract-level

HPI are listed in the second part. Town evidence from (1) shows that the surprise effect is

positive and significant: a 5% higher surprise is increases growth by 0.25%. The bottom panel

provides expected growth at low/high surprise and limited property impact: growth in high

surprise places is 0.26% below the county average compared to 0.68% below for low-surprise

places. The evidence is confirmed in (3) which uses indicators: house values at high-surprise

places grow 0.59% faster than low-surprise places. Estimates from specifications that allow

for non-linearity are not conclusive and suggest that the effect of surprises does not vary

with the level of damage. Column (4) suggests that high-surprise places experience faster

growth. The effect of a direct impact is positive and marginally significant, implying that
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higher losses increase price growth.

Tract evidence from (5)-(8) provides similar predicted values but the estimates are gen-

erally not significant. Predicted values from (5) suggest that high-surprise tracts have higher

house price growth, 0.18% below the town average, compared to low-surprise tracts, 0.71%

below the average. Both estimates are not significant. Results from (7), using indicators

imply that prices grow slower in high-impact places and surprises are not important in ex-

plaining within-town differences. Column (8) is consistent with the town results, showing

that prices grow faster at low surprise tracts.

The evidence across the two samples provides a slightly mixed picture, particularly with

the tract-level HPI data. The estimates suggest that house prices generally grow faster in

locations that experience surprises due to lower pre-hurricane expectations. In the light of

the population results in the previous section, this is not consistent with a reduction in the

demand for housing after adjustment in risk expectations, or at least suggests a relatively

smaller reduction. Instead, the evidence points to a reduction in the supply of housing which

is strong enough to lead to faster house-price growth even with slower population growth.

Such contraction is unlikely to result from higher loss of property since high surprise places

are generally less risky. Alternatively, this can be due to measures by local governments to

limit future exposure such as more aggressive enforcement of flood zone regulations or the

instituting of no-building zones. Each can limit the housing supply and lead to relatively

fast price growth. Since such local measures reflect changes in expected risk, they support

the interpretation of surprises as information shocks. They further suggest that the slower

population growth is a consequence of changes in expected risk that indirectly affect the

location choice by changing the amount of available housing and/or its price.

4.3 Discussion

Altogether, the house-price evidence complements the population results in two important

ways. It supports the interpretation that adjustments in expectations play a key role in
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high-surprise areas and prices adjustments are an important indication that high-surprise

places are impacted. Interestingly, it further clarifies that surprises can reshape the relative

size and house prices as a result of measures taken by local communities as expected risk

increases. This interpretation is at odds with the traditional view of self-selecting migration

in the case of places with lower pre-hurricane expectations.

5 Robustness

This section extends some of the main results and examines their sensitivity.

Hurricane Losses and Surprise: A critical identification assumption in the main

results is that the measure of flood surprise does not vary with the losses experienced by

counties with no previous hurricanes. In other words, I assume that counties with lower flood

risk prior are not more likely to experience a higher level of damage. I provide additional

evidence for this in Table 9. The results show two different specifications: (1)-(3) regress

the surprise measure on hurricane losses, (4)-(6) allows surprise to vary by hurricane history.

In all cases the sample is exactly as the main results. Columns (1) and (4) only include a

county and state-year FE, while the rest are based on the quasi-experimental research design

that matches counties by risk, income, and population.

Results in columns (1) and (4) where I do not apply the quasi-experimental design clearly

indicate that surprises are indeed correlated with losses as one might expect. This is to be

expected since residents with lower priors are likely to engage less in private mitigation. This

suggests that population or house price estimates based on this specification will confound

the information impact of hurricanes.

Results in (2)-(3) and (5)-(6) where I use the quasi-experimental design clearly show that

surprise does not predict hurricane losses, particularly in the case of counties with no history

of hurricanes. Once counties are matched by risk, income, and population the expected level

of damage is similar within the peer group. Within the group, variations in surprise relative
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to the group average are only based on residents’ beliefs and do not predict expected damage.

Overall, this robustness shows that it is critical to control for differences in the underlying

county characteristics when identifying the effect of surprise. Failing to do so will likely

overestimate the information channel of hurricanes.

Building Code Enforcement: I have argued above that increases in house price growth

paired with decrease in population growth suggest that the supply of housing may be re-

duced by stronger enforcement of local building standards. To test this I use data from

the annual Census of Governments Finance and focus on the locally-financed spending on

“Protective inspection and regulation”. This is defined as: “regulation of private enterprise

for the protection of the public and inspection of hazardous activities. This category in-

cludes expenditure on building code inspections and regulations”. This category of spending

generally includes salaries and capital outlays related to regulation activities by the county.

While it is admittedly a noisy measure of building code enforcement, an increase in spending

in the year after the hurricane is suggestive of higher regulation.

Results are listed in Table 10. Columns (1)-(2) use all of the reported data, which may not

be reported by each county in every year and includes zeros. Columns (3)-(4) drop the zeros.

All estimates for the effect of surprise are positive and the last two columns are statistically

significant. They suggest that in the year after the hurricane, spending on enforcement of

building codes increases more in counties with lower priors. As local governments internalize

the “new news” from the hurricane and update their beliefs about weather risk, they increase

spending on building code enforcement, leading to higher construction cost. This is consistent

with the observed increase in house price growth.

Alternative Surprise Measure Within Counties: The within-county analysis of

population and house prices focuses on the measure of pre-existing expectations based on

flood insurance policies with above-minimum deductible. This measure compares communi-

ties where residents choose a higher deductible only when savings in insurance premiums are

high (low-surprise) to those where residents select higher deductibles even when savings are
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lower (high-surprise). It will not identify expectations if all residents choose the minimum

deductible. Furthermore, if the set of those with higher deductible is relatively small, the

measure will not properly reflect the existing expectations. Here, I report and discuss results

using the average of expectations of policy holders with minimum and above-minimum de-

ductibles. The evidence is listed in Table 11. The estimated effects for population growth and

growth of mail addresses closely match those in Table 7. Locations with lower pre-existing

flood expectations experience bigger declines in growth rates. Similarly, in the case of real

estate values, the results are consistent with those in the main section. Higher surprise is

associated with smaller growth in house prices across towns within affected counties. Within

towns, census tracts with higher direct impact experience slower growth in values.

Population and House Prices: Post 2008 Sample: The measure of surprise in

the main results uses deductible choices to identify flood expectations. The data of flood

insurance purchases lists active insurance policies starting 2008. To cover the entire sample

from 2000, I use information on when insurance was first purchased. Flood insurance lapses

can be costly for residents because they can lose their pre-existing status and flood insurance

subsidy. This ensures that my measure will not consistently miss residents who had flood

insurance but discontinued it. Yet, residents can change their deductible, particularly after

hurricanes, and I may not be able to observe the original choice of deductible. If policy

holders reduce deductibles after hurricanes and/or direct loss, my surprise measure will mis-

identify some high-surprise communities as low-surprise. As a result, the main results can

underestimate the impact on population. In Table 12, I limit the sample to the post 2008

period, when I can precisely identify the deductible choice. As expected, the hurricanes

surprises have a stronger negative effect on population and mailing-address growth. This is

also the case with real estate values: house prices decline slightly more even in high-surprise

locations.

Out-migration to Other States and Flood Surprises: In Table 5, I showed that

hurricanes increase out-migration mainly in counties which experience their first hurricane
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during the sample (post 2000), while in-migration does not appear to be affected. Here,

I examine how this changes based on the level of surprise in each county and further test

whether out-migration is directed to the same state or residents tend to leave the state. The

results are listed in Table 13. The evidence indicates that out-migration is higher in counties

with a higher level of surprise, particularly using the average flood expectations of above-

/minimum deductible choices. Interestingly, higher level of surprise has a very strong effect

on migration to other states. This suggests hurricanes change flood expectations across a

wider swath of areas within each state, i.e. those impacted by a near miss may have to leave

the state in order to find a county with lower expected risk.

Alternative Definition of Hurricane Impact: How sensitive are the main results

to the definition of hurricane impact being above 0.66%? I explore this by re-estimating

the main specifications assuming that hurricane impact includes ares with over 0.33% in

losses. Table B1, column (1) shows that counties with no hurricane history still experience

a reduction in population growth but this is no longer significant. This suggests that less

severe events are less likely to lead to expectations updating and more likely to be ignored

as “flukes of nature”. Within the group of counties with no previous hurricanes there is still

evidence that those with lower prior are more likely to experience declines in population

growth. This is evident in columns (3), (5), and (7). Turning to within-county evidence in

Table B2, we see that the estimates are fairly consistent with the main results. Towns with

lower priors are more likely to experience declines in population growth. House price data in

Table B3 is also consistent with the main results. Overall, lowering the definition of hurricane

severity appears to attenuate the results slightly but preserves the main conclusions.

Alternative Definition of No Hurricane History: How important is the recent

hurricane experience for the main results? In this part I define hurricane history based

on the experience up to 1995, instead of up to 2000.28 This variation is expected to in-

troduce counties with recent hurricane experience, between 1995 and 2000, in the group

28I also estimated the results up to 1999 and did not see any difference with the main results.
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of no-previous-hurricane counties. In other words, for some of the counties of interest, the

severe hurricane loss will not represent “new news” as they have already experienced a pre-

vious event and may have updated risk expectations. As expected, this attenuates the main

results. Tables B4 through B6 show that the identified learning effect of disaster experience

is weaker. The estimated interactions with Flood Expectation in Table B4 are negative but

not all are statistically significant. The effect of surprise is also attenuated for population

and house price growth within counties. Overall, the evidence further supports the inter-

pretation that counties that experience a severe hurricane for a first time are more likely to

update expectations. When they have experienced a hurricane previously updating is less

empirically important

6 Conclusion

The evidence in this study suggests that direct damage and surprises, or information shocks,

due to lower pre-existing flood expectations both have an effect of similar magnitude on

growth after a hurricane. Most surprisingly, this is not consistent with a reduction in the

demand for housing after adjustment in risk expectations, or at least suggests a relatively

smaller reduction. Instead, the evidence points to a reduction in the supply of housing which

is strong enough to lead to faster house-price growth even with slower population growth.

This suggest that the slower population growth is a consequence of changes in expected risk

that indirectly affect the location choice. Surprises can reshape the size of population and

house prices as a result of measures taken by local communities as expected risk increases.

This interpretation is at odds with the traditional view of self-selecting migration in the

case of places with lower pre-hurricane expectations. Finally, I also find evidence that loss

to sunk cost investment will lead to relocations since it reduces the cost of moving. This

loss can be to residential buildings and to commercial facilities. The latter is consistent with

findings that business loss and reduction in employment opportunities are likely to also drive
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migration. 29

29There is a big literature on the economic impact of hurricanes on the local economy. See Petkov (2020).
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Tables and Figures

Table 1: Summary Statistics for Counties with Hurricane Declarations 2000-2019

This table lists summary statistics at the county level for states with hurricanes. Hurricanes are based on major disaster
declarations by FEMA between 2000 and 2019. The set of counties are divided into four groups: all counties (1-2), counties
with hurricane-related disaster declaration (3-4), counties with damage over 0.66% (5-6), and counties with damage over
0.66% and no hurricanes during 1950-2000 (7-8). Demographic data comes from the annual Census estimates and IRS.
Housing characteristics are based on FEMA data of flood insurance policies. Low-Damage Flood Surprise data uses the
choice of deductible to infer the upper/lower bound of expected risk of flooding. The upper bound is calculated by comparing
the current deductible choice with the lowest-possible one; the lower bound compares the current with a higher deductible
choice; the average takes the mean of the upper/lower bounds. The reported surprise variables are the inverse of the expected
probability of flooding. The adjusted surprise variables are the residuals from regressing individual expected probability on
a set of insurance policy observables. N stands for the number of observations in the sample. Since data availability varies,
I report the lowest number of observations.

(1) (2) (3) (4) (5) (6) (7) (8)

All With Hurricane Damage Damage ≥ .66% &

Counties Declarations ≥ .66% No Pre’00 Hurricane

VARIABLES mean sd mean sd mean sd mean sd

Demographic

Population (1,000) 98.54 316.0 134.1 301.7 161.6 471.9 153.7 460.7
Housing Units (1,000) 41.61 122.6 57.12 122.3 69.48 186.6 65.38 184.3
Population Growth (%) 0.279 1.465 0.545 1.492 0.257 1.580 0.0139 1.323
Out-migration (1,000) 4.436 12.11 6.671 14.61 8.090 20.63 7.956 22.20
Out-migration Same State (1,000) 2.530 6.968 3.867 8.821 4.760 12.40 4.602 12.36
Out-migration Other State (1,000) 1.914 5.703 2.861 6.378 3.330 8.571 3.355 9.937
In-migration (1,000) 4.442 11.16 6.941 14.33 8.188 18.61 6.780 16.90
In-migration Same State (1,000) 2.533 6.269 3.849 7.798 4.568 10.31 3.864 9.573
In-migration Other State (1,000) 1.916 5.680 3.129 7.074 3.620 8.780 2.915 7.653

Housing Characteristics

Fraction in High-Risk Flood Zone (%) 0.553 1.750 1.327 3.243 3.086 5.470 1.732 3.407
Fraction in Direct-Impact Flood Zone (%) 0.0142 0.141 0.0652 0.324 0.132 0.401 0.0237 0.0771
Fraction in Low-Risk Flood Zone (%) 0.317 1.068 0.775 1.872 1.747 2.797 1.177 1.916
Fraction Pre-FIRM (%) 0.468 1.056 0.873 1.681 1.814 2.505 1.355 1.874
Fraction Elevated (%) 0.233 1.083 0.764 2.315 1.866 3.990 0.674 1.249
Fraction 3-Floor+ (%) 0.152 0.788 0.462 1.610 0.979 2.414 0.383 1.239
Fraction Town Houses (%) 0.00116 0.0177 0.00473 0.0452 0.00918 0.0792 0.00320 0.0136
Fraction High Community Risk Rating (%) 0.118 1.121 0.479 2.209 1.259 3.822 0.770 2.939
Fraction Non-Primary Residences (%) 0.332 1.249 0.888 2.495 2.064 4.097 0.976 2.054
Building Coverage (in $100,000, 0=$150,000) -0.0707 0.725 0.105 0.741 0.264 0.922 0.129 1.187

Low-Damage Flood Suprise

Flood Surprise Upper Bound (%) -7.813 4.220 -8.088 3.967 -8.624 3.832 -8.249 3.430
Flood Surprise Upper Bound Adjusted (%) 1.396 3.380 1.197 3.136 1.002 2.551 1.213 2.456
Flood Surprise Average (%) -6.440 3.628 -6.503 3.418 -7.022 3.409 -7.027 3.106
Flood Surprise Average Adjusted (%) 0.659 2.775 0.476 2.617 0.455 2.044 0.358 2.230

Misc.

County Hurricate Declaration 0.0504 0.254 1 0 1 0 1 0
Relative Hurricane Loss (%) 0.0352 0.688 0.582 2.530 4.112 6.071 4.399 6.389
Hurricane Loss ≥.66% 0.00719 0.0845 0.125 0.331 1 0 1 0
Predicted Risk of Loss ≥.66% 12.00 6.124 16.46 9.979 22.76 15.11 14.10 8.049
No Hurricane Declaration 1950-2000 0.839 0.368 0.449 0.498 0.334 0.473 1 0
One+ Hurricane Declaration 1950-2000 0.160 0.367 0.551 0.498 0.666 0.473 0 0
Per Capita Income ($1,000) 33.19 11.27 32.88 11.24 33.62 12.11 33.33 13.62
House Price Index (FHFA) 250.2 163.8 248.2 153.4 249.2 156.7 241.9 167.5
Growth House Price Index (%) 2.653 5.675 2.913 5.786 3.290 6.159 2.707 5.996
N 43,864 1,852 276 95
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Table 2: Determinants of Low-Damage Flood Expectations

This table reports coefficients estimates from regressing each of the measure of expected loss (at the policy or the
county-average) on a set of characteristics listed in the insurance policy data. Estimates are based on different measures
of expected probability of low-damage flood: columns (1)-(2) use the upper bound based on the residents who chose
an above-minimum deductible; columns (3)-(4) average the expected probability of residents with above-minimum
deductible (upper bound) and those who took the minimum deductible (lower bound);

(1) (3) (2) (4)

Expectations Based on Insurance Deductibles: Above-Minimum Above- and Minimum

VARIABLES Individual County Average Individual County Average

Post-FIRM Construction -0.0867*** -0.0510*** -0.0709*** -0.0521***
(0.000233) (0.00241) (0.000115) (0.00197)

Total Building Damage Coverage 0.00230*** 0.0259*** 0.00238*** 0.0236***
(1.74e-05) (0.000896) (1.37e-05) (0.000760)

Total Contents Damage Coverage 0.0386*** 0.0230*** 0.0228*** 0.0168***
(0.000214) (0.00250) (0.000133) (0.00211)

Low-Risk Flood Zone -0.0299*** -0.0211*** -0.0222*** -0.0243***
(0.000470) (0.00296) (0.000232) (0.00229)

Direct-Impact High-Risk Flood Zone 0.121*** 0.173*** 0.130*** 0.125***
(0.000707) (0.0175) (0.000460) (0.0151)

Elevated -0.00587*** 0.000202 -0.00522*** -0.00612***
(0.000271) (0.00228) (0.000141) (0.00187)

Flood-Prevention Community Discount over 15% 0.00754*** 0.00309 0.000401*** -0.00338
(0.000225) (0.00347) (0.000115) (0.00298)

3+ Floors 0.0102*** 0.0160*** 0.0121*** 0.0113***
(0.000356) (0.00347) (0.000215) (0.00285)

Split-level 0.0175*** 0.0223** 0.0161*** 0.0211***
(0.00111) (0.00876) (0.000676) (0.00749)

Manufactured Home -0.0247*** 0.0136** -0.0143*** 0.00325
(0.000809) (0.00570) (0.000407) (0.00421)

Townhouse 0.0757*** 0.578 0.0535*** -0.0989
(0.0142) (1.071) (0.00995) (0.923)

Non-Primary Residence 0.00583*** -0.00396* 0.00951*** 0.000213
(0.000230) (0.00208) (0.000133) (0.00171)

Observations 370,700 2,640 875,908 2,723
R-squared 0.367 0.403 0.377 0.431

Table 3: Distribution of Flood Surprise (Upper Bound): Counties with Damage ≥ .66%

This table provides a detailed view of the distribution of the rate of flood surprise (inverse of
the expectation of flood risk) by each state in the sample. The left panel includes county ob-
servations for those with some pre-sample hurricanes. The right panel includes observations
for those with no pre-sample hurricane.

One+ Hurricane Declaration 1950-2000 No Hurricane Declaration 1950-2000

State N p25 mean p75 sd N p25 mean p75 sd

AL 9 -8.173 -6.680 -4.324 2.819 5 -8.384 -7.100 -5.976 1.802
FL 66 -10.30 -8.225 -5.840 3.349 24 -10.21 -9.074 -8.137 2.581
GA 2 -10.65 -9.451 -8.249 1.699 18 -12.36 -10.21 -8.358 4.002
LA 45 -6.697 -5.912 -4.554 1.575 7 -7.022 -5.690 -4.528 1.630
MD 4 -10.83 -9.130 -7.434 2.309 1 -7.976 -7.976 -7.976
MS 11 -5.753 -5.063 -3.927 2.049 13 -6.356 -6.813 -4.455 4.777
NC 54 -9.528 -8.202 -6.191 2.659 3 -9.670 -7.629 -6.247 1.804
NJ 5 -10.35 -10.47 -10.18 0.679 2 -14.84 -12.03 -9.220 3.975
NY 6 -10.92 -8.319 -6.568 2.305 6 -11.71 -10.35 -5.611 5.625
PA 1 -7.732 -7.732 -7.732 2 -6.902 -6.428 -5.954 0.670
TX 26 -10.08 -8.668 -7.591 2.344 32 -8.482 -7.426 -6.267 1.942
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Table 4: Summary Statistics for Locations within Counties with Hurricane Damage ≥.66%

This table lists summary statistics for locations – state-place or census tract – within counties with 0.66% damage, depending on their pre-sample
hurricane incidence. For information about variable definitions please refer to Table 1.

(1) (2) (3) (4) (5) (6) (7) (8)

State Place Data Census Tract Data

No Pre’00 Hurricane No Pre’00 Hurricane

VARIABLES mean sd mean sd mean sd mean sd

Demographic

Population/Mailing Addresses (1,000) 47.86 191.8 61.61 256.1 2.324 1.256 2.002 1.104
Growth Population/Mailing Addresses (%) 0.324 2.004 -0.0291 1.523 0.651 8.825 -0.214 14.71

Housing Characteristics

Fraction in High-Risk Flood Zone (%) 0.561 1.356 0.531 1.255 0.115 0.635 0.0795 0.263
Fraction in Direct-Impact Flood Zone (%) 0.0224 0.133 0.00722 0.0306 0.00510 0.0545 0.00117 0.0108
Fraction in Low-Risk Flood Zone (%) 0.414 0.862 0.415 0.801 0.0683 0.216 0.0527 0.146
Fraction Pre-FIRM (%) 0.338 0.596 0.424 0.746 0.0611 0.283 0.0546 0.147
Fraction Elevated (%) 0.298 0.847 0.195 0.486 0.0688 0.518 0.0251 0.102
Fraction 3-Floor+ (%) 0.205 0.680 0.122 0.414 0.0355 0.183 0.0137 0.0656
Fraction Town Houses (%) 0.00260 0.0358 0.00112 0.00655 0.000363 0.00576 0.000188 0.00336
Fraction High Community Risk Rating (%) 0.295 1.150 0.252 1.073 0.0474 0.259 0.0488 0.235
Fraction Non-Primary Residences (%) 0.398 1.074 0.292 0.686 0.0759 0.388 0.0405 0.145

Low-Damage Flood Surprise

Flood Surprise Upper Bound (%) -8.931 5.642 -9.162 8.200 -7.988 5.169 -7.526 4.745
Flood Surprise Upper Bound Adjusted (%) 0.828 5.182 1.582 7.469 0.894 4.243 1.353 4.228
Flood Surprise Average (%) -7.230 5.299 -8.176 8.151 -6.468 4.570 -6.492 4.426
Flood Surprise Average Adjusted (%) 0.418 3.856 0.705 5.789 0.491 3.596 0.949 3.766

Misc.

County Hurricane Declaration 1 0 1 0 1 0 1 0
Hurricane Loss ≥.66% 1 0 1 0 1 0 1 0
No Hurricane Declaration 1950-2000 0.249 0.433 1 0 0.248 0.432 1 0
Fraction Claimed Insurance (%) 42.93 42.53 36.87 41.22 49.68 46.09 51.25 47.25
ZHVI (in $100K centered at $150) / House Price Index (FHFA) 0.967 2.370 0.941 3.325 219.7 92.75 227.4 108.6
Growth ZHVI/House Price Index (%) 3.727 6.342 3.596 4.340 3.930 10.36 2.844 8.886
N 812 217 3,855 900
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Table 5: The Effect of Hurricane Damage and Historical Hurricane Incidence on Population

This table provides estimates from two specifications: i)4 ln Popc,t = βHurc,t−1+αc+ψPeerGroup(c),t+εc,t; ii)4 ln Popc,t = β1Hurc,t−1NoHistc+β2Hurc,t−1YesHistc+αc+ψPeerGroup(c),t+εc,t. The outcome variable
for the first eight estimates is population growth; the last four results focus on the log of out-/in-migration. Hurricanes are based on major disaster declarations by FEMA between 2000 and 2019. The sample
consists of county-year observations for the year prior and during a hurricane disaster declaration. Hurricane is and indicator for counties with 0.66%+ damage. No Hurricane History/Yes Hurricane History
is and indicator for zero/some hurricane declarations before the start of the sample: between 1950 and 2000. Columns (1) through (6) use an alternative specification for the peer/control group for affected
counties. Column (1) uses a state-year fixed effect and assumes that all of the counties with presidential disaster declaration but below 0.66% damage serve as a control. Column (2) compares population
responses only across counties with similar expected risk of higher damage – I introduce a RiskGr category which assigns each county with a hurricane declaration to a risk category. I assign categories
by estimating a probit model of the ex-post damage above 0.66% on a set of housing characteristics and historical hurricane occurrence. Columns (3) and (4) interact the county’s risk category with a
population-size (PopGrp) or income-per-capita (IncGrp) category. Population size has three categories relative to cutoffs at 10,000 and 100,000 people. Income-per-capita category is based on cutoffs at
$20,000 and $40,000. In column (6), I replace the risk category with a simple grouping based on the relative number of structures in the high-risk flood zone and an indicator for no history of hurricanes
(FloodZoneGrp). The flood-zone group is based on the decile of the whole distribution of the variable in the sample.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

VARIABLES Growth Population Log Out-Migration Log In-Migration

Hurricane -0.00176** -0.00191** -0.00231*** -0.00201** -0.00223*** -0.00250***
(0.000653) (0.000742) (0.000777) (0.000788) (0.000740) (0.000869)

Hurricane x No Hurricane History -0.00391** -0.00197 0.0374** 0.0327** 0.0103 0.0223
(0.00170) (0.00184) (0.0159) (0.0139) (0.0172) (0.0184)

Hurricane x Yes Hurricane History -0.00155** -0.00276*** 0.000797 0.0110 -0.0110 -0.0193*
(0.000737) (0.000927) (0.00870) (0.00835) (0.00888) (0.0114)

Observations 4,272 4,001 3,658 3,780 3,365 3,098 3,365 3,098 2,967 2,787 2,977 2,793
R-squared 0.822 0.841 0.854 0.852 0.866 0.869 0.866 0.869 0.999 0.999 0.999 0.999
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State x Year FE Yes
State x RiskGrp x Year FE Yes
State x RiskGrp x PopGrp x Year FE Yes
State x RiskGrp x IncGrp x Year FE Yes
State x RiskGrp x PopGrp x IncGrp x Year FE Yes Yes Yes Yes
State x FloodZoneGrp x PopGrp x IncGrp x Year FE Yes Yes Yes Yes
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Table 6: Flood Expectations in Counties with No Previous Hurricanes

This table provides estimates from specification (3). The outcome variable in each case is population growth. The sample consists of county-year observations for the year prior and
during a hurricane disaster declaration, between 2000 and 2019 . Hurricane is and indicator for counties with 0.66%+ damage. No Hurricane History/Yes Hurricane History is and
indicator for zero/some hurricane declarations before the start of the sample: between 1950 and 2000. Flood Surprise is the negative of the county average of expected probability of
low-damage flood, inferred from the individual choice of deductible in the flood insurance policies of residents. Estimates are based on different measures of expected probability of
low-damage flood: columns (2)-(3) use the upper bound based on the residents who chose an above-minimum deductible; columns (4)-(5) average the expected probability of residents
with above-minimum deductible (upper bound) and those who took the minimum deductible (lower bound); columns (6)-(7) use the residuals after regressing the upper bound on
housing characteristics; columns (8)-(9) use the residuals based on the upper and the lower bound. In each case, I estimate but do not report regressors specified in model (3). For
details on the county peer groups, please see Table 5. The bottom panel reports the estimate of total impact of Hurricane in counties with no hurricane history for low levels of surprise
(at the 25th percentile of the variable) and for high surprise (at the 75th percentile).

(1) (2) (3) (4) (5) (6) (7) (8) (9)

VARIABLES Growth Population

Expectations Based on Insurance Deductibles: Above-Minimum Above- and Minimum Above-Minimum Adj Above- and Minimum Adj

Hurricane x No Hurricane History -0.00391** -0.00990*** -0.0119*** -0.00991*** -0.0126*** -0.00415** -0.00212 -0.00433*** -0.00317*
(0.00170) (0.00269) (0.00410) (0.00251) (0.00352) (0.00165) (0.00201) (0.00165) (0.00190)

Hurricane x No Hurricane History x Flood Surprise -0.0545** -0.0966** -0.0712*** -0.131*** -0.0992** -0.180*** -0.149** -0.232***
(0.0270) (0.0430) (0.0274) (0.0377) (0.0437) (0.0664) (0.0582) (0.0574)

Observations 3,365 2,624 2,367 2,776 2,517 2,624 2,367 2,776 2,517
R-squared 0.866 0.897 0.906 0.885 0.894 0.897 0.906 0.885 0.894
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
State-RiskGrp-PopIncGrp-Year FE Yes Yes Yes Yes Yes
State-FloodZoneGrp-PopIncGrp-Year FE Yes Yes Yes Yes

Low Surprise (25 percentile) - -0.00464*** -0.00270 -0.00437*** -0.00253 -0.00388** -0.00173 -0.00366** -0.00204
(0.00161) (0.00198) (0.00157) (0.00180) (0.00169) (0.00204) (0.00180) (0.00188)

High Surprise (75 percentile) - -0.00666*** -0.00581*** -0.00630*** -0.00559*** -0.00709*** -0.00671*** -0.00712*** -0.00671***
(0.00167) (0.00214) (0.00167) (0.00206) (0.00176) (0.00234) (0.00142) (0.00220)
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Table 7: Population Growth and Flood Surprises within Counties with No Hurricane History

This table provides estimates of model (4). Columns (1)-(4) are based on observations of population growth at towns (state-places) within
counties which experience their first hurricane within the sample period. The sample drops towns with less than 3,000 residents. Columns
(5)-(8) are based on observations of growth in mailing addresses in census tracts within towns that experience their first hurricane. The
sample for these estimates starts in 2006 coinciding with the availability of the mailing addresses data. It drops census tracts with less than
300 residents. Impact is the fraction of of flood insurance claims (out of total active insurance policies) in the town/census tract. Surprise is
the negative of the expected probability of low-damage flood, inferred from residents choosing above-minimum flood insurance deductible.
Expected probability is calculated for each resident and is aggregated at the town/census tract level. High Impact is an indicator for
top-quartile of fraction of insurance claims. High Surprise is an indicator for top-quartile of values of flood surprise. Estimates for the
rest of the regressors specified in model (4) are omitted from the table. The bottom panel provides estimates for the effect of hurricane
exposure at different levels of surprise.

(1) (2) (3) (4) (5) (6) (7) (8)

VARIABLES Growth Population Growth Mailing Addresses

Impact -0.0129** -0.0113** -0.00836 0.0228**
(0.00617) (0.00570) (0.00540) (0.0112)

Surprise -0.0155*** -0.0341*** -0.0870** -0.146***
(0.00401) (0.00950) (0.0377) (0.0394)

Surprise x Impact 0.0265** 0.330***
(0.0129) (0.127)

High Impact -0.00816* -0.0106* 0.00389 0.00309
(0.00450) (0.00552) (0.00418) (0.00456)

High Surprise -0.00232** -0.00343*** -0.00485*** -0.00559***
(0.00110) (0.00128) (0.00137) (0.00118)

High Surprise x High Impact 0.0109* 0.00774**
(0.00557) (0.00372)

Observations 7,533 7,533 7,533 7,533 6,990 6,990 6,990 6,990
R-squared 0.875 0.875 0.875 0.875 0.678 0.678 0.584 0.584
State-Place FE Yes Yes Yes Yes
County-Year FE Yes Yes Yes Yes
Census Tract FE Yes Yes Yes Yes
State-Place-Year-FE Yes Yes Yes Yes
Additional Controls Yes Yes Yes Yes Yes Yes Yes Yes

Low Surprise x Low Impact 0.00166*** 0.00374*** 0.00932** 0.0156***
(0.000436) (0.00104) (0.00404) (0.00422)

High Surprise x Low Impact 0.000750*** 0.00175*** -0.00232** -0.00343*** 0.00253** 0.00423*** -0.00485*** -0.00559***
(0.000204) (0.000482) (0.00110) (0.00128) (0.00109) (0.00114) (0.00137) (0.00118)

Low Surprise x High Impact -0.00173 -0.0106* 0.0150*** 0.00309
(0.00181) (0.00552) (0.00416) (0.00456)

High Surprise x High Impact -0.00313 -0.00310*** 0.00485*** 0.00524*
(0.00200) (0.00119) (0.00128) (0.00271)
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Table 8: House Prices and Flood Surprises in Counties with No Hurricane History

This table provides estimates from specification (5). The outcome variable in each case is an annual measure of housing prices. The
sample in columns (1)-(4) is based on Zillow’s House Value Index aggregated at state-places; the sample in columns (5)-(8) is based on
the FHFA’s House Price Index aggregated at census tracts. In each case the sample includes annual observations for the period of 2000
to 2019. As in Table 7 the state-place sample drops towns with less than 3,000 residents and the census-tract sample drops tracts with
less than 300 residents. Impact is the fraction of of flood insurance claims (out of total active insurance policies) in the town/census
tract. Surprise is the negative of the expected probability of low-damage flood, inferred from residents choosing above-minimum flood
insurance deductible. Expected probability is calculated for each resident and is aggregated at the town/census tract level. High Impact
is an indicator for top-quartile of fraction of insurance claims. High Surprise is an indicator for top-quartile of values of flood surprise.
Estimates for the rest of the regressors specified in model (4) are omitted from the table. The bottom panel provides estimates for the
effect of hurricane exposure at different levels of surprise.

(1) (2) (3) (4) (5) (6) (7) (8)

VARIABLES Growth Zillow House Value Index Growth FHFA House Price Index

Impact 0.0132 0.0158* -0.0411* -0.0988**
(0.00949) (0.00890) (0.0231) (0.0439)

Surprise 0.0478*** 0.0104 0.0636 0.127
(0.0128) (0.0160) (0.122) (0.136)

Surprise x Impact 0.0484*** -0.592*
(0.0183) (0.351)

High Impact 0.0122* 0.0144 -0.0305*** -0.0371***
(0.00739) (0.00930) (0.00495) (0.00620)

High Surprise 0.00587*** 0.00643*** -0.00656 -0.0121***
(0.00222) (0.00236) (0.00481) (0.00213)

High Surprise x High Impact -0.0103 0.0292***
(0.00879) (0.0107)

Observations 3,609 3,609 3,609 3,609 10,504 10,504 10,502 10,502
R-squared 0.962 0.962 0.962 0.962 0.821 0.822 0.789 0.790
State-Place FE Yes Yes Yes Yes
County-Year FE Yes Yes Yes Yes
Census Tract FE Yes Yes Yes Yes
State-Place-Year-FE Yes Yes Yes Yes
Additional Controls Yes Yes Yes Yes Yes Yes Yes Yes

Low Surprise x Low Impact -0.00684*** -0.00181 -0.00705 -0.0141
(0.00170) (0.00218) (0.0135) (0.0151)

High Surprise x Low Impact -0.00257*** -0.000626 0.00587*** 0.00643*** -0.00184 -0.00369 -0.00656 -0.0121***
(0.000627) (0.000815) (0.00222) (0.00236) (0.00352) (0.00394) (0.00481) (0.00213)

Low Surprise x High Impact 0.00310 0.0144 -0.0162 -0.0371***
(0.00428) (0.00930) (0.0150) (0.00620)

High Surprise x High Impact 0.00643 0.0105 -0.00887* -0.0199**
(0.00455) (0.00659) (0.00517) (0.00840)
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Table 9: Hurricane Losses and Surprise: Quasi-Experimental Design

This table provides estimates from a variation of specification (3) where the outcome variable is the ac-
tual county loss during a hurricane impact (as a fraction of GDP). Flood Surprise is the negative of the
county average of expected probability of low-damage flood, inferred from the individual choice of de-
ductible in the flood insurance policies of residents. All columns use the Above-Minimum flood surprise
measure. All estimates use the upper bound based on the residents who chose an above-minimum deductible.
No Hurricane History/Yes Hurricane History is and indicator for zero/some hurricane declarations before the
start of the sample: between 1950 and 2000. For details on the county peer groups, please see Table 5.

(1) (2) (3) (4) (5) (6)

VARIABLES Hurricane Losses

Flood Surprise 0.0801** 0.0490 0.0408
(0.0335) (0.0323) (0.0379)

Flood Surprise x No Hurricane History 0.0757** 0.00510 0.0124
(0.0333) (0.0402) (0.0318)

Flood Surprise x Yes Hurricane History 0.0836** 0.0687 0.0668
(0.0346) (0.0424) (0.0663)

Observations 3,477 2,624 2,367 3,477 2,624 2,367
R-squared 0.510 0.672 0.684 0.510 0.673 0.684
County FE Yes Yes Yes Yes Yes Yes
State-Year FE Yes - - Yes - -
State-RiskGrp-PopIncGrp-Year FE - Yes - - Yes Yes
State-FloodZoneGrp-PopIncGrp-Year FE - - Yes - - -

Table 10: Surprises and Building Code Enforcement

This table provides estimates from a variation of specification (3) where the outcome variable is county spending
on protective inspection and regulation (as a fraction of GDP). Columns (1)-(2) use the full sample of available
county spending data. Columns (3)-(4) drop non-reported or zero values. Flood Surprise is the negative
of the county average of expected probability of low-damage flood, inferred from the individual choice of
deductible in the flood insurance policies of residents. All columns use the Above-Minimum flood surprise
measure. All estimates use the upper bound based on the residents who chose an above-minimum deductible.
No Hurricane History/Yes Hurricane History is and indicator for zero/some hurricane declarations before the
start of the sample: between 1950 and 2000. For details on the county peer groups, please see Table 5.

(1) (2) (3) (4)

VARIABLES County Inspection Spending

Hurricane x No History of Hurricanes -2.96e-05 7.38e-05 0.000536 5.82e-05
(7.35e-05) (8.76e-05) (0.000348) (0.000126)

Hurricane x No History of Hurricanes x Flood Expectation 0.000482 0.00136 0.00753** 0.00210*
(0.000885) (0.00113) (0.00337) (0.00114)

Observations 1,135 1,008 561 470
R-squared 0.975 0.975 0.979 0.977
County FE Yes Yes Yes Yes
State-RiskGrp-PopIncGrp-Year FE Yes Yes
State-FloodZoneGrp-PopIncGrp-Year FE Yes Yes
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Table 11: Population and House Prices in Counties with No Hurricane History: Alternative
Surprise Measure

This table provides estimates of model (4) and (5) using an alternative measure of surprise. Columns (1)-(4) follow the sample and variable
definitions from Table 7. Columns (5)-(8) follow the sample and variable definitions from Table 8. In all cases Surprise is the inverse of
the average of the implicit flood risk from both the minimum- and above-minimum deductible policies. For additional information please
refer to Table 7 and Table 8.

(1) (2) (3) (4) (5) (6) (7) (8)

Growth Population Growth Mail Addresses Growth Zillow HVI Growth FHFA HPI

Impact -0.0130** -0.0115** -0.00721 0.0160* 0.0128 0.0164* -0.0364** -0.0594**
(0.00611) (0.00563) (0.00485) (0.00899) (0.0101) (0.00987) (0.0147) (0.0252)

Surprise -0.0165*** -0.0392*** -0.0813* -0.136*** 0.0399** -0.0197 -0.0861 -0.0284
(0.00412) (0.0127) (0.0433) (0.0459) (0.0164) (0.0162) (0.130) (0.151)

Surprise x Impact 0.0307* 0.299** 0.0756*** -0.323
(0.0158) (0.123) (0.0191) (0.277)

Observations 8,457 8,457 8,429 8,429 4,080 4,080 13,416 13,416
R-squared 0.885 0.885 0.636 0.636 0.961 0.961 0.823 0.823
State-Place FE Yes Yes Yes Yes
County-Year FE Yes Yes Yes Yes
Census Tr - FE Yes Yes Yes Yes
State-Place-Year-FE Yes Yes Yes Yes
Additional Controls Yes Yes Yes Yes Yes Yes Yes Yes

Low Surprise x Low Impact 0.00151*** 0.00363*** 0.00712* 0.0119*** -0.00446** 0.00199 0.00644 0.00212
(0.000378) (0.00118) (0.00379) (0.00402) (0.00174) (0.00177) (0.00969) (0.0113)

High Surprise x Low Impact 0.000704*** 0.00171*** 0.00240* 0.00402*** -0.00156*** 0.000753 0.00248 0.000818
(0.000178) (0.000558) (0.00128) (0.00136) (0.000602) (0.000621) (0.00374) (0.00436)

Low Surprise x High Impact -0.00154 0.0113*** 0.00563 -0.000394
(0.00165) (0.00393) (0.00411) (0.0112)

High Surprise x High Impact -0.00291 0.00441*** 0.00673 -0.00276
(0.00183) (0.00142) (0.00425) (0.00491)

Table 12: Population and House Prices in Counties with No Hurricane History: Post 2008

This table provides estimates of model (4) and (5) restricting the sample to observations post 2008. Columns (1)-(4) follow the sample
and variable definitions from Table 7. Columns (5)-(8) follow the sample and variable definitions from Table 8. In all cases Surprise
is the inverse of the average of the implicit flood risk from both the minimum- and above-minimum deductible policies. For additional
information please refer to Table 7 and Table 8.

(1) (2) (3) (4) (5) (6) (7) (8)

Growth Population Growth Mail Addresses Growth Zillow HVI Growth FHFA HPI

Impact -0.0263** -0.0237** -0.0118** 0.0156 0.0204** 0.0231*** -0.0760*** -0.113
(0.0126) (0.0121) (0.00481) (0.0106) (0.00841) (0.00847) (0.0289) (0.0850)

Surprise -0.0238** -0.0589*** -0.0878** -0.136*** 0.0576*** 0.000922 0.233 0.311
(0.0116) (0.0166) (0.0411) (0.0398) (0.0143) (0.0238) (0.321) (0.368)

Surprise x Impact 0.0446*** 0.276** 0.0745** -0.382
(0.0153) (0.117) (0.0330) (0.754)

Observations 4,232 4,232 6,416 6,416 2,272 2,272 6,136 6,136
R-squared 0.764 0.764 0.558 0.558 0.942 0.942 0.715 0.715
State-Place FE Yes Yes Yes Yes
County-Year FE Yes Yes Yes Yes
Census Tr - FE Yes Yes Yes Yes
State-Place-Year-FE Yes Yes Yes Yes
Additional Controls Yes Yes Yes Yes Yes Yes Yes Yes

Low Surprise x Low Impact 0.00239* 0.00654*** 0.00949** 0.0148*** -0.00848*** -0.000174 -0.0258 -0.0344
(0.00129) (0.00180) (0.00444) (0.00430) (0.00210) (0.00343) (0.0356) (0.0408)

High Surprise x Low Impact 0.000954 0.00304*** 0.00256** 0.00398*** -0.00324*** 8.53e-05 -0.00708 -0.00944
(0.000606) (0.000826) (0.00120) (0.00116) (0.000826) (0.00134) (0.00975) (0.0112)

Low Surprise x High Impact -0.0124* 0.0141*** 0.0121 -0.0395
(0.00727) (0.00423) (0.00903) (0.0405)

High Surprise x High Impact -0.0141* 0.00432*** 0.0189** -0.0167
(0.00766) (0.00122) (0.00862) (0.0136)
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Table 13: Flood Expectations in Counties with No Previous Hurricanes: Out-migration to
Other States

This table provides estimates from specification (2). The outcome variables are the log of total out-
migration and out-migration only to a different state. Hurricanes are based on major disaster declarations
by FEMA between 2000 and 2019. The sample consists of county-year observations for the year prior
and during a hurricane disaster declaration. Hurricane is and indicator for counties with 0.66%+ damage.
No Hurricane History is and indicator for zero hurricane declarations before the start of the sample:
between 1950 and 2000. For more information please refer to Table 5.

(1) (2) (3) (4)
Log Out-Migration

All States Other States All States Other States
Expectations Based on Insurance Deductibles: Above-Minimum Above- and Minimum

Hurricane x No History of Hurricanes 0.0700** 0.138* 0.0849*** 0.136**
(0.0343) (0.0729) (0.0295) (0.0533)

Hurricane x No History of Hurricanes x Flood Surprise 0.508 1.411** 0.751** 1.582***
(0.349) (0.661) (0.297) (0.542)

Observations 2,307 2,307 2,445 2,445
R-squared 0.999 0.998 0.999 0.998
County FE Yes Yes Yes Yes
State-RiskGrp-PopIncGrp-Year FE Yes Yes Yes Yes

Low Surprise 0.0223 0.00555 0.0256 0.0111
(0.0190) (0.0294) (0.0176) (0.0302)

High Surprise 0.0395* 0.0533 0.0479** 0.0582*
(0.0202) (0.0398) (0.0198) (0.0348)
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Appendix (for online publication)

Appendix A: Data Construction

Hurricane Damage

The SBA dataset of verified residential and business damage is based on applications for low-
interest loans to cover uninsured losses. It includes the total loan amount requested, loss
incurred, and the location of the property. I use the publicly-available version, aggregated
at the zip-code and city/county for each disaster. Since the non-public data includes all
applications with the corresponding verified loss, the public data approximates the overall
uninsured loss.

FEMA provides non-repayable grants to homeowners and renters to cover disaster losses
through its Individuals and Households Program (IHP). Payments help with immediate
needs following disasters and supplement other sources of recovery funds. I use information
from IHP for homeowners, which includes total property damage, determined by FEMA
inspectors.

The IHP data for renters and homeowners lists the amount of rental assistance provided
for households which are displaced. Property damage measures uninsured residential loss
and rental relief proxies for population displacement. FEMA provides state and local gov-
ernments grants to help respond/recover after disasters through the Public Assistance (PA)
program. The PA data includes damage to roads and bridges, water control facilities, public
buildings, and public utilities. It also provides funds for the necessary removal of debris
and protective measures. I use the total amount of public assistance paid to each county to
approximate the amount of damage to the public infrastructure. I identify the insured loss
caused by flooding with data on insurance claims from the National Flood Insurance Pro-
gram (NFIP).30 For each claim the data includes the census tract level, the amount paid, the
date on which the loss was incurred, as well as the characteristics of the structure (including
the flood zone). I match the date of loss to the hurricane date in each county to identify
whether the insurance claim is related to a disaster declaration.

Expected Flood Loss

I calculate the implicit upper bound of expected probability of low-damage flood by focusing
only on insurance policies with above-minimum deductibles. Table B7 lists the possible
choices for the years after (and including) 2010. For that period the lowest deductible
was $1,000/$1,000 for building/contents loss. I start with policies with $2,000/$1,000 and
calculate the change in the premium if they were to choose the $1,000/$1,000 option: from
0.95 to 1 or a 5% increase in the premium. Since I observe the current premium paid, I can
calculate the amount by which the premium increases if the household chooses the lowest
deductible. The formula for the implicit upper bound of expected loss is:

ExpProbupper =
4Premium
4Deductible

(6)

30This is publicly available on FEMA’s website.
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I continue with policies with $2,000/$2,000 and identify the change in the premium based
on the factors from Table B7. Based on the increase in the premium and the reduction in
the deductible, I can calculate the upper bound of the expected probability. Altogether, I
match $2,000/$1,000, $2,000/$2,000, $3,000/$1,000, $3,000/$2,000, and , $3,000/$3,000 to
the lowest option of $1,000/$1,000.

In the period before 2010, the lowest deductible option is $500/$500. In that case I
match $1,000/$500, $2,000/$500, $1,000/$1,000, $2,000/$1,000, and $2,000/$2,000 to the
lowest option of $500/$500.

To calculate the lower-bound of expected probability, I focus on policies with $500/$500
or $1,000/$1,000, depending on the period. I then identify the change in the premium factor
if the household chooses $1,000/$500 or $2,000/$1,000, respectively. I the formula in (6)
based on the change in the premium and deductible.
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Appendix B: Robustness
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Table B1: Alternative Impact Definition: Flood Expectations in Counties with No Previous Hurricanes

This table provides estimates from specification (3). The outcome variable in each case is population growth. The sample consists of county-year observations for the year prior
and during a hurricane disaster declaration, between 2000 and 2019 . Hurricane is and indicator for counties with 0.33%+ damage. No Hurricane History/Yes Hurricane History
is and indicator for zero/some hurricane declarations before the start of the sample: between 1950 and 2000. Flood Surprise is the negative of the county average of expected
probability of low-damage flood, inferred from the individual choice of deductible in the flood insurance policies of residents. Estimates are based on different measures of
expected probability of low-damage flood: columns (2)-(3) use the upper bound based on the residents who chose an above-minimum deductible; columns (4)-(5) average the
expected probability of residents with above-minimum deductible (upper bound) and those who took the minimum deductible (lower bound); columns (6)-(7) use the residuals
after regressing the upper bound on housing characteristics; columns (8)-(9) use the residuals based on the upper and the lower bound. In each case, I estimate but do not
report regressors specified in model (3). For details on the county peer groups, please see Table 5. The bottom panel reports the estimate of total impact of Hurricane in
counties with no hurricane history for low levels of surprise (at the 25th percentile of the variable) and for high surprise (at the 75th percentile).

(1) (2) (3) (4) (5) (6) (7) (8) (9)

VARIABLES Growth Population

Expectations Based on Insurance Deductibles: Above-Minimum Above- and Minimum Above-Minimum Adj Above- and Minimum Adj

Hurricane x No History of Hurricanes -0.000762 -0.00197 -0.00608** -0.00241 -0.00619** -0.00227 1.84e-05 -0.00184 -0.000175
(0.00128) (0.00269) (0.00277) (0.00245) (0.00261) (0.00163) (0.00179) (0.00143) (0.00150)

Hurricane x No History of Hurricanes x Flood Expectation 0.00473 -0.0631** -0.00704 -0.0830*** -0.00461 -0.0932* -0.0180 -0.122***
(0.0329) (0.0315) (0.0345) (0.0316) (0.0437) (0.0513) (0.0437) (0.0393)

Observations 3,385 2,631 2,367 2,790 2,517 2,631 2,367 2,790 2,517
R-squared 0.868 0.896 0.905 0.884 0.893 0.896 0.905 0.884 0.893
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
State-RiskGrp-PopIncGrp-Year FE Yes Yes Yes Yes Yes
State-FloodZoneGrp-PopIncGrp-Year FE Yes Yes Yes Yes
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Table B2: Alternative Impact Definition: Population Growth and Flood Surprises within
Counties with No Hurricane History

This table provides estimates of model (4). Columns (1)-(4) are based on observations
of population growth at towns (state-places) within counties which experience their first
hurricane within the sample period. The sample drops towns with less than 3,000 residents.
Impact is the fraction of of flood insurance claims (out of total active insurance policies) in
the town. Surprise is the negative of the expected probability of low-damage flood, inferred
from residents choosing above-minimum flood insurance deductible. Expected probability is
calculated for each resident and is aggregated at the town. High Impact is an indicator for
top-quartile of fraction of insurance claims. High Surprise is an indicator for top-quartile of
values of flood surprise. Estimates for the rest of the regressors specified in model (4) are
omitted from the table.

(1) (2) (3) (4)

VARIABLES Growth Population

Impact -0.00711* -0.00486
(0.00412) (0.00385)

Surprise -0.0166*** -0.0398***
(0.00439) (0.0129)

Surprise x Impact 0.0341**
(0.0156)

High Impact -0.00629 -0.00834*
(0.00445) (0.00477)

High Surprise -0.00154 -0.00316**
(0.00125) (0.00134)

High Surprise x High Impact 0.00963**
(0.00410)

Observations 7,533 7,533 7,533 7,533
R-squared 0.875 0.875 0.875 0.875
State-Place FE Yes Yes Yes Yes
County-Year FE Yes Yes Yes Yes
Additional Controls Yes Yes Yes Yes
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Table B3: Alternative Impact Definition: House Prices and Flood Surprises within Counties
with No Hurricane History

This table provides estimates of model (4). Columns (1)-(4) are based on observations
of population growth at towns (state-places) within counties which experience their first
hurricane within the sample period. The sample drops towns with less than 3,000 resi-
dents. Impact is the fraction of of flood insurance claims (out of total active insurance
policies) in the town. Surprise is the negative of the expected probability of low-damage
flood, inferred from residents choosing above-minimum flood insurance deductible. Ex-
pected probability is calculated for each resident and is aggregated at the town. High
Impact is an indicator for top-quartile of fraction of insurance claims. High Surprise is
an indicator for top-quartile of values of flood surprise. Estimates for the rest of the
regressors specified in model (4) are omitted from the table.

(1) (2) (3) (4)

VARIABLES Growth Zillow House Value Index

Impact 0.0126 0.0156*
(0.00959) (0.00868)

Surprise 0.0558*** 0.0186
(0.0122) (0.0200)

Surprise x Impact 0.0486*
(0.0279)

High Impact 0.0156*** 0.0113
(0.00525) (0.00762)

High Surprise 0.0114** 0.00828***
(0.00527) (0.00262)
(0.00125) (0.00134)

High Surprise x High Impact 0.0250
(0.0205)

Observations 3,609 3,609 3,609 3,609
R-squared 0.962 0.962 0.962 0.962
State-Place FE Yes Yes Yes Yes
County-Year FE Yes Yes Yes Yes
Additional Controls Yes Yes Yes Yes
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Table B4: No Hurricanes History Pre 1995: Flood Expectations in Counties with No Previous Hurricanes

This table provides estimates from specification (3). The outcome variable in each case is population growth. The sample consists of county-year observations for the year prior
and during a hurricane disaster declaration, between 2000 and 2019 . Hurricane is and indicator for counties with 0.66%+ damage. No Hurricane History/Yes Hurricane History
is and indicator for zero/some hurricane declarations before the start of the sample: between 1950 and 1995. Flood Surprise is the negative of the county average of expected
probability of low-damage flood, inferred from the individual choice of deductible in the flood insurance policies of residents. Estimates are based on different measures of
expected probability of low-damage flood: columns (2)-(3) use the upper bound based on the residents who chose an above-minimum deductible; columns (4)-(5) average the
expected probability of residents with above-minimum deductible (upper bound) and those who took the minimum deductible (lower bound); columns (6)-(7) use the residuals
after regressing the upper bound on housing characteristics; columns (8)-(9) use the residuals based on the upper and the lower bound. In each case, I estimate but do not
report regressors specified in model (3). For details on the county peer groups, please see Table 5. The bottom panel reports the estimate of total impact of Hurricane in
counties with no hurricane history for low levels of surprise (at the 25th percentile of the variable) and for high surprise (at the 75th percentile).

(1) (2) (3) (4) (5) (6) (7) (8) (9)

VARIABLES Growth Population

Expectations Based on Insurance Deductibles: Above-Minimum Above- and Minimum Above-Minimum Adj Above- and Minimum Adj

Hurricane x No History of Hurricanes -0.00275*** -0.00664*** -0.00361 -0.00805*** -0.00486* -0.00315*** -0.00308*** -0.00322*** -0.00259**
(0.000996) (0.00249) (0.00288) (0.00225) (0.00280) (0.000992) (0.00102) (0.000972) (0.00103)

Hurricane x No History of Hurricanes x Flood Expectation -0.0367 -0.00534 -0.0670** -0.0313 -0.0424 -0.0120 -0.0614 -0.0319
(0.0258) (0.0324) (0.0276) (0.0396) (0.0481) (0.0476) (0.0631) (0.0669)

Observations 3,229 2,496 2,386 2,664 2,539 2,496 2,386 2,664 2,539
R-squared 0.870 0.902 0.910 0.891 0.898 0.902 0.910 0.891 0.897
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
State-RiskGrp-PopIncGrp-Year FE Yes Yes Yes Yes Yes
State-FloodZoneGrp-PopIncGrp-Year FE Yes Yes Yes Yes
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Table B5: No Hurricanes History Pre 1995: Population Growth and Flood Surprises within
Counties with No Hurricane History

This table provides estimates of model (4). Columns (1)-(4) are based on observations
of population growth at towns (state-places) within counties which experience their first
hurricane within the sample period. The sample drops towns with less than 3,000 residents.
Impact is the fraction of of flood insurance claims (out of total active insurance policies) in
the town. Surprise is the negative of the expected probability of low-damage flood, inferred
from residents choosing above-minimum flood insurance deductible. Expected probability is
calculated for each resident and is aggregated at the town level. High Impact is an indicator
for top-quartile of fraction of insurance claims. High Surprise is an indicator for top-quartile
of values of flood surprise. Estimates for the rest of the regressors specified in model (4) are
omitted from the table.

(1) (2) (3) (4)

VARIABLES Growth Population

Impact -0.00508** -0.00345
(0.00254) (0.00237)

Surprise -0.0167*** -0.0298***
(0.00332) (0.00666)

Surprise x Impact 0.0216**
(0.00942)

High Impact -0.00304 -0.00359*
(0.00190) (0.00214)

High Surprise -0.00107* -0.00159**
(0.000650) (0.000691)

High Surprise x High Impact 0.00410*
(0.00235)

Observations 7,533 7,533 7,533 7,533
R-squared 0.875 0.875 0.875 0.875
State-Place FE Yes Yes Yes Yes
County-Year FE Yes Yes Yes Yes
Additional Controls Yes Yes Yes Yes
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Table B6: No Hurricanes History Pre 1995: House Prices and Flood Surprises within Coun-
ties with No Hurricane History

This table provides estimates of model (4). Columns (1)-(4) are based on observa-
tions of population growth at towns (state-places) within counties which experience
their first hurricane within the sample period. The sample drops towns with less
than 3,000 residents. Impact is the fraction of of flood insurance claims (out of
total active insurance policies) in the town. Surprise is the negative of the expected
probability of low-damage flood, inferred from residents choosing above-minimum
flood insurance deductible. Expected probability is calculated for each resident
and is aggregated at the town level. High Impact is an indicator for top-quartile of
fraction of insurance claims. High Surprise is an indicator for top-quartile of values
of flood surprise. Estimates for the rest of the regressors specified in model (4) are
omitted from the table.

(1) (2) (3) (4)

VARIABLES Growth Zillow House Value Index

Impact -0.00156 0.00170
(0.00603) (0.00624)

Surprise 0.0424*** 0.0154
(0.0137) (0.0210)

Surprise x Impact 0.0401*
(0.0235)

High Impact -0.00299 -0.00172
(0.00512) (0.00527)

High Surprise 0.00349 0.00444
(0.00415) (0.00415)

High Surprise x High Impact -0.00985

Observations 3,609 3,609 3,609 3,609
R-squared 0.962 0.962 0.962 0.962
State-Place FE Yes Yes Yes Yes
County-Year FE Yes Yes Yes Yes
Additional Controls Yes Yes Yes Yes

Table B7: Deductible Factors: Single Family Post 2010

This table lists deductible choices and the
premium factors associated with each option.
The characteristics of the insured house and
the amount of coverage determine the base-
line premium. The choice of deductible can
scale up or down the final premium due.

Deductible Options: Post-FIRM Pre-FIRM

Building/Contents $1,000 Ded. $2,000 Ded.

$1,000/$1,000 1 1.1
$2,000/$1,000 0.95 1.03
$2,000/$2,000 0.925 1
$3,000/$1,000 0.9 0.98
$3,000/$2,000 0.875 0.95
$3,000/$3,000 0.85 0.925
$4,000/$1,000 0.85 0.9
$4,000/$2,000 0.825 0.9
$4,000/$3,000 0.8 0.875
$4,000/$4,000 0.775 0.85
$5,000/$1,000 0.825 0.9
$5,000/$2,000 0.8 0.875
$5,000/$3,000 0.78 0.85
$5,000/$4,000 0.765 0.83
$5,000/$5,000 0.75 0.81
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